e ~

WA HC
, UNCLASSIFIED RADC-TR-8

J ST O O

ﬂ

IN DISTRIBUTED PERSONAL
INFORMATION SYSTENS YOLUM.. <U) B8N
FORSDIC

LABS INC CAMSRIDGE

88 BBN-5901-VOL-1

K ET AL. AUG
8-159-V0L-1 F30601-81-C-0256 F/G 12/7

|

10 & K2 2
|"||=—— i TR
ok ke ™=
o 5
| EE

S fiis e,

A

RESEARCH IN DISTRIBUTED PERSONAL
COMPUTER-BASED INFORMATION SYSTEMS
Vol I (of two)

Harry C. Forsdick
Robert H. Thomas

Contractor: BBN Laboratories Inc.

Contract Number: F30602-81-C-0256

Program Code Number: XT10

Effective Date of Contract: 2 July 1981

Contract Expiration Date: 14 January 1985

Short Title of Work: Research in Distributed Personal Computer-
Based Information Systems

Period of Work Covered: April 84 - October 84

Principal Investigator: Robert H. Thomas
Phone: (617) 873-3483

RADC Project Engineer: Thomas F. Lawrence
Phone: (315) 330-2158

Approved for public release; distribution unlimited.

This research was supported by the Defense Advanced
Research Projects Agency of the Department of Defense

and was monitored by Thomas F. Lawrence, RADC (COTD),
Griffiss AFB NY 13441-5700 under Contract F30602-81-C-0256.

e —EE——

oL U!:fl.ﬁiIFIED HIS DA ///), 4 7 7¢§'C

) Form Approved
REPORT DOCUMENTATION PAGE OME No. 0704-0188
1a. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
UNCLASSIFIED N/A —_—
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/ AVAILABILITY OF REPORT
N/A
Approved for public release;
i?, gscussmomouloownanoma SCHEDULE distribution unlimited.
"4 PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)
5901 RADC-TR-88-159, Vol I (of two)
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL | 7a. NAME OF MONITORING QRGANIZATION
BBEN Laboratories Inc. (t# apylicable) Rome Air Development Center (COTD)
T'6c ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
10 Moulton Street
Cambridge MA 02238-0001 Griffiss AFB NY 13441-570Q
8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION Defense Advanced (If applicabie)
Research Projects Agency B 1'-'30602-8}-0-0256
F'8c ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK_UNIT
i"‘l’gn“ﬂ”g AB;‘;‘;& ELEMENT NO. | NO. NO. ACCESSION NO.
tlington 62708E D224 01 01

[T, TITLE (include Security Classification)
RESEARCH IN DISTRIBUTED PERSONAL COMPUTER-BASED INFORMATION SYSTEMS

12. PERSONAL AUTHOR(S)
Harry C. Forsdick, Robert H. Thomas

ety S g A e —————
132, TYPE OF REPORT 135, TIME COVERED 74, DATE OF REPORT (Year, Month, Day) |15, PAGE COUNT
Final rrom _Apr 84 to Oct 84 Asgust 1988 108

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse If necessary and identify by block number)
FIELD GROUP SUB-GROUP Multi Media Message System
i2 0/ Distributed System
Distributed Personal Computer Environment

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

" pThe primary focus of the personal computer task area is the development of an electronic

message system called Diamond, which will run in a distributed personal computer environment.
The message system will: support a user interface that exploits the capabilities of advanced
single-user computers, handle messages that contain data other than text, have a distributed
architecture, operate in a secure fashion, permit use from a variety of user access points,
and have a transportable implementationm. /f\

\

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
D uncLassiprepunumiTed KJ SAME AS RPT.] pric users | UNCLASSIFIED
223 NAME OF RESPONSIBLE INDIVIOUAL N 22b. TELEPHONE (include Area Code) | 22c_ OFFICE SYMBOL
Thomas F. Lawrence (315) 330-2158 RADC (COTD)
DO Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE
UNCLASSIFIED

J————-—-—

TABLE OF CONTENTS

1. INTRODUCTION

2. SUMMARY OF CONTRACT ACTIVITY

2.1 Project Overview

2.1.1 Distributed Personal Computer Systems

2.1.2 Support for Strategic C3 Experiment

2.1.3 Hermes Maintenance
2.2 Summary of Contract Accomplishments

3. OVERVIEW OF RECENT ACTIVITY

4. THE DIAMOND MULTIMEDIA MESSAGE SYSTEM

4.1 Porting Diamond to the Sun Workstation

4.1.1 PCode—to—-88000 Code Peephole Optimizer

4.1.2 Database Server

4.1.3 First Release of Diamond on Sun Workstation

4.2 Performance Analysis of Diamond
4.2.1 Performence Analysis Tools
4.2.2 Experiments and Results
4.3 Authentication Manager
4.3.1 Workstation Authentication

4.3.2 Access Control Within the Authentication Manager

4.3.3 Authentication Manager Extensions
4.3.4 Port to the Sun Workstation
4.3.5 Review of Diamond Access Control
4.4 Document Manager
4.5 Vocoder Manager
4.6 Access Point
4.7 Multimedia Editor: EditDoc
4.7.1 Image Editing
4.7.2 Spread sheets / Charts
4.7.3 Text
4.7.4 Graphics
4.7.5 Clipboard
4.7.8 Miscellaneous

DTIC TAB
Unanncunced O
Justificatio

_’."‘__"-_—-_
. pecession For

“NTIS GRA&L

o

Rer

! I e¢ritution/

Avail and/or

'pist Special

" pvailebility Codes

Page

(4]

[W< N N7 N7

4.8 Import / Export Manager

4.9 Papers, Documentation, Meetings, and Presentations

5. THE JERICHO JADE SYSTEM

5.1 Image Manipulating Operations
5.2 Compatibility with Sun Workstations

8. THE JADE PROGRAMMING ENVIRONMENT

8.1 Network protocols and IPC
8.2 Software State Database

8.2.1 Dependencies

8.2.2 Using Dependencies
8.3 IPC Monitoring Faclility

6.3.1 IPC Monitor Scenario

7. JERICHO INTERLISP

7.1 Active Values
8. ALEPH
8.1 Application of Active Values

8.2 Code Presenter

9. HERMES MAINTENANCE

it

31

33

33

43

43

45
46
47
48

61

61

65

85

89

77

LIST OF FIGURES

Figure 1. The Distributed Architecture of Diamond 12
Pigure 2. A Spread sheet / Chart in Viewing Form 27
Figure 3. A Spread sheet / Chart in Editing Form 28
Figure 4. Scaling of BitMap Images 34
Figure 5. Reduction and Enlargement of an Image, Aspect Ratio Preserved 35
Fiyure 6. Reduction and Enlargement of an Image, Arbitrary Aspect Ratio 36
Figure 7. The effect of a horizontal shearing operation. 37
Figure 8. The effect of rotating an image through a small angle. 39
Figure 8. DocStruc ReadValue request 52
Figure 10. DocStruc ReadValue request — message description 53
Figure 11. DocStruc ReadValue request — detailed information 54
Figure 12. AuthBindingOf request 55
Figure 13. AuthBindingOf response 56
Figure 14.° DocStruc ReadValue response 57
Figure 15. DocStruc ReadValue response ~ detailed information 58
Figure 16. Atomiclmage ReadVajue request 59
Figure 17. AtomicIlmage ReadValue response 60
Figure 18. Transforming Old into New 68
Figure 19. The reverse transformation 70
Figure 20. Code segment parameterized by variables OBJECT and OPERATOR 71
Figure 21. Code segment with OBJECT bound to REAL.NUMBER and OPERATOR 72
unbound
Figure 22. Code segment with OBJECT bound to REAL.NUMBER and OPERATOR 73
bound to TIMES
Figure 23. Code segment with OBJECT unbound and OPERATOR bound to TIMES 74

iii

1. INTRODUCTION

This is the final technical report for Contract No. F30802-81-C-0256, entitled
"Research in Distributed Personal Computer Based Information Systems.” It summarizes
the major accomplishments of the contract. In addition, it reports on work done
between April 1984 and October 1984. Work done before April 1984 is described in
contract semi-annual Reports 1 through 5, BBN Reports 4924, 5301, 5395, 5722 and
5723.

The report is organized as follows. The contract objectives and the major
results of the contract effort are summarized in Section 2. Sections 3 through
9 report on contract activity during the final 6 months of the contract. Section
4 discusses work on the Diamond multimedia system and related activities. Work on
Jade, the Jericho Pascal operating system, is described in Section 5. Section
6 presents our activities related to the development of the Jade programming
environment. Work on the Interlisp system for the Jericho computer is described in
Section 7. Section 8 discusses our work on Aleph. Section 9 describes recent Hermes
maintenance activity.

2.

SUMMARY OF CONTRACT ACTIVITY

Section 2.1 summarizes the objectives of the work done under the contract, and

Section 2.2 summarizes our major accomplishments.

2.1

1.
2.
3.

Project Overview

The tasks for this project fell into three broad areas:

Research in distributed personal computer systems;
Support for the Strategic C3 Experiment;

Maintenance of the Hermes electronic message system.

The project objectives in each of these areas are reviewed briefly below.

2.1.1 Distributed Personal Computer Systems

The primary focus of the personal computer task area was the development of an

electronic message system, called Diamond, which was to run in a distributed personal

computer environment. The Diamond message system was designed to:

o

o

The

Support a user interface that exploits the capabilities of advanced single-—
user computers;

Hendle messages that contain data other than text (e.g., images, line
drawings, speech);

Have a distributed architecture;
Operate in a secure fashion;
Permit use from a variety of types of user access points;

Have a transportable implementation.

personal computers to be used in the initial implementation of the Diamond

message system were Jericho computer systems. The portability of Diamond was to be

demonstrated by moving the system to another comparable personal computer system.

It was expected that development of the message system would require work in a

number of supporting areas, including:

Basic System Support.

Diamond was developed as an application program that executes on a
collection of personal computers and shared resource computers
interconnected by a high bandwidth local network. Diamond, as well as
other applications, requires the support of "operating system” level software.
The purpose of this software is to make the Jericho personal computer
usable as a sophisticated, autonomous, single—user computer system.
Development of the basic °® system support involved the design eand
implementation of storage management functions, bit map display functions. a
multiple process capability, an interprocess communication facility, and
support for the standard DoD network communication protocols.

Input/Output Support for a Variety of Data Types.

The Diamond message system was designed to handle messages composed of a
number of types of information, including text, facsimile, graphics, and
speech. This capability for multiple media communication required the
development of software to support the input and output of these different
types of data, and, in some cases (speech, sound and facsimile), system
engineering to interface the personal computer systems with hardware
required for the input/output of this data.

Distributed System Support.

. Diamond was designed to execute on a distributed system architecture.
Diamond and other applications developed for this environment require
supporting software that enables personal computers to function effectively
in a nultiple—-computer network environment. The supporting software
required included: a network interprocess communication facility, a
distributed file system supported by personal computer storage resources
and dedicated file server computer resources, means for accessing devices
that are remote from a personal computer as if they were local, a user
authentication mechanism, and access control mechanisms to provide for
controlled sharing in a distributed environment. The supporting software
runs in pert on the personal computers, and in part on the shared-
resource computers.

Programming Language Support.

The Pascal programming language was used for much of the initial
programming required for the Diamond message system development. In
addition, it was expected that InterLisp would be used for experimentation
and research in the user interface issues. Therefore, a certain amount of
effort was required to ensure that the implementations of Pascal and
Interlisp for the Jericho computer and their supporting environments are
adequate. Furthermore, it was felt important that software modules written
in Pascal and InterlLisp be able to be used together in personal computer
based systems such as Diamond. When the project began, this sort of
interoperability was not possible, and it was not clear to what extent it
could be achieved.

5. Programming Environments

Diamond was expected to be a reasonably large system. [t would be built by
a team of implementers, of which each member would use a personal
comy .ter for software development. To facilitate implementation of systems
to be built like Diamond, we planned to design, implement, and experiment
with an application development environment, called the Jade environment.
The Jade environment was intended to support the construction of
distributed application programs and to be capable of supporting
programming projects large enough to require many programmers, each
supported by a personal computer.

We also planned to experiment with new programming environment, cealled
Aleph, to explore extensions to the Interlisp environment that exploit
features unique to personal computers of the Jericho class. This was to
involve experimental investigation in the areas of graphical debugging,
facilitation of routine bookkeeping activities, techniques for presenting
multiple views of systems, vocal annotation of textual documents, and
content—addressed documentation.

2.1.2 Support for Strategic C3 Experiment

The objective of work in this area was to support the Strategic C3 Experiment, a
technology transfer and evaluation project conducted by DARPA and the Strategic Air
Command. A number of contractors worked on this experiment with ARPA and SAC.
Our role was to adapt the Hermes electronic message system to the needs of SAC users

participating in the experiment.

In particular, we worked to:

1. Modify Hermes so that it can operate with a full-screen editor, such as
EMACS or WE, in order to provide full-screen editing and composing of draft
messages as an integrated Hermes functicn.

2. Extend the data management capabilities of Hermes to provide a template-
driven report generator capable of summarizing the information contained in
groups of messege/records.

3. Investigate the problem of software aids for scheduling personnel and
equipment. Develop algorithms and experimental software to support these
scheduling tasks and experimentally study user interface and implementation
issues.

2.1.3 Hermes Maintenance

The objective of this task was to provide software maintenance for the Hermes
electronic message system. This included correcting problems that would prevent

effective use of Hermes, should any arise, installing Hermes on new hosts at the

.

direction of the ARPA office, and making improvements to the Hermes software.

2.2 Summary of Contract Accomplishments

Some of our accomplishments during the contract were the following:

o The Diemond mnultimedia message system was designed, implemented, and
successfully demonstrated. Diamond currently allows text, graphics, images,
speech, electronic spread sheets and charts to be combined into a single
integrated document or message. Diamond is implemented as a distributed
system which runs on an architecture that includes powerful single user
workstations and shared server computers interconnected by a high
performance network. Diamond has been in use by the project team for over
a year, and will be available for use by others on commercially available
hardwar- in the near future.

o The feasibility of transporting the Diamond system from a hardware base of
Jericho workstations, upon which it was originally implemented, to other
comparable hardware was demonstrated by transporting most of the Diamond
implementation to a hardware base of Sun Workstations.

© An approach to permit programs written in Interlisp and in Pascal to run
simultaneously on a Jericho computer was designed and enough of the design

was implemented to demonstrate the feasibility of the approach. This
approach is documented in BBN Report No. 5287, "Language Interoperability
on Jericho.”

o0 A Software State Database system was designed and implemented. This
system facilitates software development in an environment where many
machines are used to support many developers working on a project. The
system maintains information cn the software modules which make up the
system under development. Information maintained about a module includes
where (which machine) the most recent version of the file for the module
resides, the person who last worked on the module, whether the module is
currently being worked upon and by whom, other modules which depend
upon the module, other modules upon which the module depends, and so
forth. The system provides a number of facilities including convenient
means for installing new versions of modules, checking modules out to work
on, and distributing the latest versions of software to selected machines.

o A facility for monitoring the execution of distributed application programs
was designed and implemented. The facility is designed to serve both as an
aid for debugging distributed programs and as a means for demonstrating
them. The facility makes it possible for a user to "watch” the execution of
a distributed program at a number of levels of details.

o We participated with other DARPA contractors in the development of
protocols that support transmission of multimedia documents among hosts in
the DoD internetwork. These protocols make it possible for the users of a
Diamond cluster to communicate over the internet with users of other
Diamond clusters or of other multimedia message systems.

o The Jericho INTERLISP system was successfully ported from INTERLISP-10 and

6

is in active use by the Al community at BBN. The system incorporates both
reference counting and compacting garbege collection, bitmapped graphic in
color and in black and white, and multiple—processing capability.

We designed and implemented a Content-Addressed Documentation capability
called "The INTERLISP Advertiser”, and we provided the following programming
tools: Directory and File Browsers, File and Code Comparison Presenters,
Graphical Debugger, and Apropos and Indexing facilities.

A number of modifications to the Hermes message system were made to
support the Strategic C3 experiment. The principal modifications were to
integrate the EMACS screen editor into Hermes in order to provide a full-
screen editing capability for messages, and to extend the Hermes data
management capabilities to support template—driven report generation.
These modifications were integrated into the standard distribution version of
Hermes, making them available to all Hermes users.

The Hermes message system was maintained for the period of the contract.
As part of this effort, Hermes was modified to operate in the DoD internet as
part of the ARPANET transition for NCP to TCP; the Hermes distribution and
installation procedures were simplified and documented so that systems
personnel at Hermes sites could install new versions of the system will no
direct involvement by BBN personnel; a number of minor enhancements were
made to Hermes; and numerous minor problems and bugs were corrected.

3. OVERVIEW OF RECENT ACTIVITY

Sections 4 through 9 report work done during the last six months of the
contract. This section summarizes project activity during that period.

Our major accomplishments during this period include the following.

o The Diamond multimedia document editor wes successfully ported from
Jericho to the Sun workstation early in the reporting period. Since we
expected that the editor would be one of the more difficult parts of Diamond
to port, this success gave us confidence that the porting strategy chosen
was a good one.

o The Diamond multimedia editor was installed on the Sun workstations in the
DARPA office. Draft documentation on the use of the editor was prepared
and delivered to DARPA.

o After porting the multimedia editor, most of the other parts of Diamond have
been successfully ported to the Sun workstation. The components ported
include the interhost interprocess communication facility used by Diamond,
the Diamond Access Point and all of the Access Point tools, the Document
Manager, and the Authentication Manager.

0 As part of an effort to understand and improve the performance of Diamond,
we developed a number of performance monitoring tools which we used to
conduct a series of performance measurement experiments on Diamond.
After anealyzing the results of the experiments, we were able to identify a
number of performance bottlenecks, and eliminate many of them.

o The notion of workstation authentication was eaedded to the Diamond
Authentication Manager. Workstation authentication provides a means for a
workstation to authenticate all of its processes in a single interaction with
the Authentication Manager. The Diamond Access Point was modified to make
use of workstation authentication. Use of workstation authentication results
in & significant improvement in interactive responsiveness for Access Point
operations that require the creation of a new Access Point process since
there is no need to explicitly authenticate the new process by means of an
interaction with the Authentication Manager.

o The Authentication Manager was improved by adding access control to the
operations it performs.

0 A means for permitting a number of Diamond users to serially share a single
vocoding device was developed. A Vocoder Manager process, which manages
the vocoder and an "intelligent” modem, was developed to support this.
When a user at an Access Point needs to use a vocoder, the Access Point
makes a request of the Vocoder Manager. If the vocoder is not in use, the
Vocoder Manager uses the modem to place a telephone call to the user's
office. After the call is established, the telephone circuit is used as the
path between the user and the vocoder.

o The EditDoc multimedia editor has been improved in a number of ways. The

9

oo

notion of a clipboard has been implemented; a user can use the clipboard to
"cut” parts of a document and to "paste” them into other documents (or
into another part the same document). Support for electronic spread sheets
as a media type has been added; spread sheet data can be represented in
tabular form or in a variety of chart forms or in a combination of both
tabular and chart forms. The text handling capabilities of EditDoc have
been improved to support dynamic formatting of text as it is entered and
edited; in addition, the options for formatting text have been greatly
expanded. The image editing and graphics editing capabilities of the editor
have also been enhanced.

The Software State Database System, which is part of the Jade environment,
has been improved in a number of ways. These improvements include: the
ability to recognize dependencies among files in the data base; the use of
dependency information to check the consistency of operations (such as the
installation of modified modules); support for moving modules back and forth
between private software development environments and the public software
repository; and, the maintenance of creation (write) dates for each module
being maintained by the system. In addition, the system has been made
significantly more robust.

The initial implementation of the IPC Monitoring Facility, which is a part of
the Jade environment, has been completed, and it has been released for
general use within the project.

We implemented a version of Active Values, which provide a way to invoke a
function when the value of a datum is set or accessed. This opens the way
for the incorporation of Object Oriented programming paradigms in Jericho
INTERLISP.

We designed and implemented an application of Active Values that allows
users to monitor and visualize the changes that occur in any given datum as
a consequence of program activity or editing. We also improved the Code
Presenter and the Graphical Debugger.

We attended the IFIP 8.5 Working Conference on Computer Message Systems
held in May 1984 at Nottingham England and presented a paper on Diamond
titled “Initial Experience with Multimedia Documents in Diamond".

These items, and others, are described in the following sections.

10

4. THE DIAMOND MULTIMEDIA MESSAGE SYSTEM

Diamond is a distributed system implemented by a variety of components which
together provide a single coherent service. The components of Diamond are:

o User Access Point: The user’'s main contact with Diamond. The Access Point
is composed of several tools including:

Coordinator: All of the actions of the Access Point are directed by
this tool. The user can always inquire about the state of Diamond by
interacting with the Coordinator.

Document Presenter/Editor: Documents are viewed and composed using
this tool. The Document Editor embodies all of the protocols concerning
Document and Atomic Object Representations.

Folder Presenter: Folders of documents and other folders are viewed
and manipulated by the Folder Presenter. This tool also interacts with
the Document Presenter/Editor tool to show or compose documents.

User/Group Registry Presenter: The User and Group Databases (see
below) can be examined and modified using this tool.

o Authentication Maneager: This component maintains information about
authenticated users and processes of a Diamond cluster as well as long term
~ information about user preferences and groups of users.

o Document Manager: Documents and folders of documents and other folders
are managed by this component. When a user saves a document, the
Document Manager accepts the document and stores it in a Folder for later
retrieval.

o Device Managers: Various devices such as Image Scanners and Printers are
managed by Device Managers.

o Import/Export Manager: Documents sent to recipients outside a Diamond
cluster are Exported by this component. Likewise, documents originating
outside a cluster which are addressed to a recipient supported by the
cluster are imported by the Import/Export Manager. This component takes
care of any protocol conversions that may have to occur between the
standard DARPA Internet Mulitimedia Protocol and the protocols used
internally by Diamond. :

o Internet Gateway. Communication with hosts on the DARPA Internet is done
by use of the Internet Gateway.

Figure 1 illustrates the architecture of a Diamond cluster.

11

Diamond Distributed Architecture

Figure 1. The Distributed Architecture of Diamond

12

4.1 Porting Diamond to the Sun Workstation

We have successfully ported the EditDoc multimedia editor from Jericho to the
Sun workstation. EditDoc running on a Sun was demonstrated at BBN to DARPA in mid
April. The version that runs on the Sun is identical to the version that runs on
Jericho. This version of EditDoc has been installed on the Sun Workstations in the
DARPA/IPTO office. Preliminary documentation on the use of EditDoc has been
prepared and delivered to DARPA.

Work has progressed on porting the rest of Diamond to the Sun workstation. The
following sections describe that work.

4.1.1 PCode-t0-88000 Code Peephole Optimizer

The major work done on the PCode trenslator during this reporting period
beyond the correction of bugs as they were discovered was the addition of a peephole
code optimizer. The optimizer makes a pass over the generated code looking for code
sequences which can be transformed into better code sequences. Ordinarily, e
peephole optimizer functions by limiting the context within which it operates to a
small number of lines of output code. This optimizer, however, operates on the .entire
body of a procedure. '

The first step in making this change was to modify the code generator output
format from strings to a more easily processed form. Then the generated code was
examined manually looking for bad code sequences, and transformations were devised
to improve them. The transformations fall into a relatively small number of categories:

1. Choosing the best way to load constants into registers and variables.
2. Adding, subtracting, and comparing small constants.

3. Condensing chains of logical operations.

4. Eliminating unreachable code.

5. Testing booleans in packed records.

6. Using to memory operations where possible.

7. Eliminating eliminating superfluous TST and CMP instructions.

8. Using word and byte instructions were possible.

13

»7

9. Using short form branches were possible.

A total of 27 transformation have been implemented which result in a code size
reduction of about seven percent. Code speed improvement has not been measured,

but several of the transformations produce substantial improvement in the loop

increment and testing code.

4.1.2 Database Server

One of the biggest differences between the programming environments of the Sun

&nd the Jericho is the per—process address space on the Sun versus the single
address space for all processes on the Jericho. Memory sharing on the Jericho allows
very wide-band communication to be implemented efficiently. Several Diamond servers
(the Document Manager and the Authentication Manager) made use of this facility to
communicate with sub-processes which were spawned to handle ﬁingle requests.

particular, these servers made use of several shared, long—term, persistent databases.
Access to the databases was synchronized by the use of semaphores, but changes were
propagated automatically since there was only one copy of the database in memory,

directly reflecting the copy of the database on disk.

In order to allow multiple processes to share the same database on the Sun, we
developed a single database server which maintains a list of currently open database
files. It handles database requests (Find, Insert, Delete) from processes on the same
machine. The procedural interface for contacting the database server is exactly the

same as the interface for directly dealing with the database file. This has minimized

the changes necessary to programs using the database facility. The overhead in

accessing a database entry menaged by the server (Jade IPC, copying of data) is

obvicusly larger than using shared memory but is acceptable, given the way the

database is used. A typical Document Manager or Authentication Manager operation

will access or update only a few entries. Inter-machine communication costs far

outweigh the additional intra—-machine communication imposed by the database server

approach.

The database server is being used on both the Jericho and the Sun.

4.1.3 First Release of Diamond on Sun Workstation

By the end of the reporting period we had ported the core of Diamond to the

14

Sun Workstation and have demonstrated that the basic operations of Diamond can now
be performed on the Sun Workstation.

The components that have been ported to the Sun to date are:

0 Access Point and Access Point tools:

EditDoc
Coordinator
ShowFolder
ShowRegistry.

o Document Manager

o Authentication Manager

Components remaining to be ported are:

o Import/Export Manager
0 Scanner Manager

o Voice Manager

In addition, a Printer Manager will have to be written once a “standard" Laser Printer
(or set of printers) has been chosen. Since one of the first Diamor.d installations is
expected to be in the ADDCOMPE testbed, it is likely that (one of) the standard
printer(s) will be the printer chosen for use in ADDCOMPE.

In the next section we describe some performance improvements that have been
made to the version of Diamond running on the Jericho computer system. The current
version of Diamond on the Sun has some additional performance problems which will
have to be solved in the future.

4.2 Performance Analysis of Diamond

During this reporting period, a substantial amount of work has been done on
measuring, anealyzing, and improving the performance of various parts of the Diamond
system. The work falls into three broad categories. First, a collection of performance
monitoring and eanalysis tools was developed, and various parts of Diamond were
instrumented to use these tools. Second, a series of controlled experiments were
performed to gather data, and analysis was done on those data. Finally, various
performance improvements were designed, implemented, and validated with more

15

————E

—7

performance measurement and analysis.
4.2.1 Performance Analysis Tools

There are three basic approaches to performance analysis that we have pursued.
First, an event logging facility was implemented, various parts of Diamond were
instrumented to use it, and an event log analysis program wes implemented. This
approach provides insights into the macro-behavior of the system. Second, the Jade
RoutineTrace program was augmented and used to analyze micro-—behavior of various
parts of Diamond. Third, a model was built to describe the expected message passing

behavior of the system for various tasks. The model used in conjunction with the log
analyses showed us where inefficient exchanges of messages were taking place. The
model, the logs, and the routine traces were also used to validate each other, to
insure that we were not overlooking anything.

The event logging mechanism is made up of two parts, a library called LoglLid
which is used by Diamond components as the interface to the logging mechanism, and
a server called LogServer which runs in a separate process and serializes the events
and records them in log files. An event contains the following information:

0 A timestamp;

o The time spent in pre—processing (time is recorded for elapsed wall clock
time, CPU utilization time, and page fault time in milliseconds);

o The time spent in the body (i.e., the time required to perform the requested
task);

o The time spent in post—-processing;
o The operation being performed,
o The UID of the object being manipulated;

o The source of the event.

The event log analysis program is called PrintlLog and is used in two primary
ways. First, it is used to produce summary statistics to aid in identifying the most
frequently used operations and the most costly operations. Second, it is used to
examine sequences of events, to fully understand the message passing behavior and
where time is being spent. This is particularly difficult in a distributed environment.
The analysis tool can integrate logs from different machines to make the total
sequence of events more understandable.

16

4.2.2 Experiments and Results

In order to fully understand the performance of the system, data was collected
under several different circumstances. First, data gathering was enabled on all of our
machines, and a large mass of field data was collected over several weeks. This data
was used mainly to identify the most frequent and the most costly operations. Second,
a controlled experiment was done between two machines, with nothing else running on
either machine. This data was used to identify common sequences of messages that
should be implemented as compound operations, and extraneous messages that could
be eliminated. After compound operations were implemented and extraneous messages
were eliminated, the experiment was repeated. It became clear from this data that
paging performance was the major bottleneck. A series of routine traces was done in
various parts of the system to identify paging problems. Some of those problems were
corrected, others were not easy to correct, yet tended to mask out other performance
problems. So, the third series of experiments involved adding memory to two machines
and repeating the second experiment, effectively eliminating the paging problems by
brute force. This final experiment provided more detailed and reliable information
about where time was being spent in the system.

The most significant performence improvements were the identification of common
sequences of operations that could be turned into compound operations. Most of
these changes were in the Document Store Manager, the Access Point Coordinator, and
the Folder Presenter.

The Document Store Manager was improved in several ways. It was modified to
make more efficient use of the underlying database system that it uses to keep track
of documents and parts of documents. It was modified to minimize the number of
times it opens and closes files in the process of handling user requests to create and
retrieve documents. The implementation of the Send operation, which sends a
document to other users as a message by adding citations for the document to their
InBoxes, was streamlined and made less synchronous in nature.

The Access Point Coordinator was changed to initialize processes and create
windows in a much faster way. Also, the login procedure and user preference
mechanism was significantly streamlined. The Access Point now uses “workstation
authentication”, a mechanism that was added to the Authentication Manager to allow a
single authentication for a workstation, with possible overriding process authentication

(see Section 4.3). This cuts down considerability on message traffic when a new

17

I

process is spawned by the Coordinator.

The Folder Presenter was changed to deal with citation display formats in a
much more efficient way. This makes a substantial difference for large folders. Also,
when a user asks to Open a set of documents, the Folder Presenter initiates a parallel
pre—fetch of those documents. This makes a big difference when the user uses the
Next Document command in EditDoc, since the next document will already be in the
local cache.

The results of all of these measurements and improvements has been significant.
Before we started this process, the system was useable for everyday message traffic,
but was very frustrating. It is now very nice to use, and usually seems as fast of
most text—only message systems. However, the version of Diamond that is now running
on the Sun Workstation still has serious performance problems. A similar round of
performance measurement, analysis, and improvements will need to be made on that
version of the system.

4.3 Authentication Manager

Two major improvements have been made to the Authentication Manager: the
notion of workstation authentication has been implemented, and access control has
been added to Authentication Manager operations. In addition, a number of minor
extensions were implemented, and the Authentication Manager was transported to the
Sun Workstation. Finally, a review of the Diamond access control mechanism, motivated
by difficulties experienced by users in setting up the access controls they desire, was
started.

4.3.1 Workstation Authentication

Many different processes run on behalf of a user interacting with Diamond on an
Access Point workstation. For example, for each open folder, there is a process on
the Access Point running the ShowFolder program. Under the initial design for the
Authentication Manager, each of these processes has to have an entry in the Access
Control Database (ACDB) identifying the principal for which it has been authenticated.
The menagement of this information turns out to be quite time consuming and was

identified in the performance analysis task as a potential area for improvement.

18

To reduce the time spent in managing this information, the concept of an
authenticated workstation was developed. Under this scheme, a host (typically a
single user workstation) can request that every one of its processes be bound to the
same principal (user). That is, all of the processes running on a given workstation
can be authenticated with one entry in the ACDB. The workstation is identified by a
process UID with the Internet Address of the workstation and O's for the Incarnation
and Sequence numbers. When a user enters Diamond he identifies the principal for
which all processes running on the workstation should authenticated. This
authentication is kept in the ACDB until the user logs out. To permit finer grain
authentication for multiple processes running on the same workstation which need to
be associated with different principals, when the AuthorizationBindingOf operation is
invoked, the ACDB is first searched for the Unique Identifier of the specified process.
If there is no match, then the database is searched for the UID of the workstation on
which that process resides (gotten by setting the Incarnation and Sequence numbers
of the process’s UID to 0).

Use of workstation authentication can result in a substantial performance
improvement in many situations. For a system like Diamond where the access
point/user interface is supported by a dynamically changing collection of processes,
the number of interactions between the user interface and the Authentication Manager
is significantly reduced. The workstation need interact with the Authentication
Manager only once to authenticate itself and all processes that (will) run on it,
instead of interacting with the Authentication Manager each time a new process is

created to handle some user request.
4.3.2 Access Control Within the Authentication Manager

The initial version of the authentication manager did not perform any access
checks on operations performed on the registry or its contents. This omission was
made to facilitate the initial implementation and is clearly not permissible for an
operational system. During this reporting period, access control checking was added
to limit the operations which may be performed by any particular individual.

Each record describing a principal or group in the registry has an associjated
access control list. This access control list has the same form as access control lists

for other kinds of objects, such as documents; it lists the access rights for each of

several principals or groups. This access control list specifies who may perform each

of severa] different operations on that record. Examples of operations are reading

19

s

and writing user parameters, listing the groups of which a principal is a member,
listing the principals and groups which are members of a group, and reading and
writing the access control list itself.

In addition to the access control list per database record, there are default
access control lists used to establish the access control lists of newly created
principals and groups and an access control list for the registry itself. The registry
access control list determines who may perform operations such as creating and
removing principals and groups. The default access control lists are implemented as a
special principal and a special group and may be edited using the operations available
for editing ordinary access control lists. The registry access control list is built in to
the authentication manager and is not editable. It includes only the
SystemAdministration group.

4.3.3 Authentication Manager Extensions

Certain operations in the authentication manager which had been planned but
not yet implemented were completed in this reporting period. These include the
operations to read and modify access c.ontrol lists and the operations to add or
remove groups from the enabled set (a mechanism to reduce the access a user may

exercise).

A number of other improvements/changes were also made. The format of
database records was changed both to add access control lists and to reduce their
size by reducing the size of the area used to hold names and passwords. The hash
table routines containing the authentication database (record of logged in users) were
recoded to reduce memory requirements. Old entries in the authentication database
are removed when newer entries are made. Previously, entries would accumulate for

as long as the authentication manager was operating.
4.3.4 Port to the Sun Workstation

The authentication manager has been ported to the Sun workstation. This task
primarily involved changes to circumvent the lack of memory-sharing facilities on the
Sun. The three databases (Principal Registry, Group Registry, and Authentication
Database) are manipulated both by the main program and by sub-processes creaied to
handle individual operations. The two registries are standard databases and only
required modifications to use the new database server described in Section 4.1.2. The

20

authentication database manipulations were altered so that the main process actually
maintains the database and the subprocesses send interprocess messages to make
modifications.

4.3.5 Review of Diamond Access Control

Diamond uses an access control list mechanism for access control. Each object,
such as a multimedia document, has associated with it an access control list which
specifies who can access it and in what what ways. Each entry on an access control
list includes a principal (user) or group id and the type of access the principal or
group is permitted. Every object in Diamond has a type which determines the
operations that can be performed upon it. Originally, the type of access permitted to
a principal or group was specified by listing the operations permitted on the object.
In order to create a new access control list entry or modify an existing one, the user
specified allowable access in terms of permitted operations. This approach has the
difficulty that users tend to think in terms of relatively high level operations, which
are usually implemented by several low level operations on objects, and the operations
that appear on access control list entries are the low level operations. Consequently,
although in principle the access control mechanism is quite simple and easy to
understand, in practice users tend to have difficulty understanding how to specify

access restrictions to achieve the access control results they desire.

To correct this situation we have initiated & review of the Diamond access
control design, and expect to modify it slightly to enable users to specify access in
terms of more "macro” operations. These macro operations will be mapped into the

low level operations actually appearing on the access control list entries.

4.4 Document Manager

During this period, work on the Document Manager focused on performance
improvements, operational improvements, bug fixing, and porting the Document Manager
to the Sun workstation.

The Diamond Document Manager users Jade files to store Diamond folders.
documents, and components of documents. With the Jericho Jade file system the time
required to open a file in a given directory increases with the number of files

catalogued in the directory. During this reporting period we changed the way in

21

which Jade files and directories are used to implement the Document Store. The new
strategy is designed to spread the files used to store Diamond objects across more
directories in order to minimize the time required to open the files necessary to
access the objects. As new Diamond objects are created, whenever the number of files
in a given directory reaches a pre—determined threshold, a new directory is created
and subsequent files for new objects are created in the new directory.

We encountered a problem with the Document Store Scavenger program'. The
problem was discovered when the Scavenger was used to reconstruct the Document
Store after a system crash. The Scavenger correctly rebuilt the document hierarchy,
but failed to restore the access control lists for the various documents, folders and
media objects. The source of the problem was that access control lists for Diamond
objects were not stored with the objects themselves (i.e., in the files used to
implement the objects), but rather were stored with object descriptors (i.e., in the
internal tables used to keep track of the objects). This was corrected by modifying
the Document Manager to store access control lists with the objects themselves.

We have developed a tool that can be used to remove folders and documents
from the local Document Store cache2. The tool, which is called TrimCache, “trims"” the
cache so that the storage consumed by the cache is less than some specified amount
of disk storage. It does this by deleting cached objects, least recently used objects
first, until the desired storage level is reached. TrimCache is typically run
periodically on Access Point workstations in the background via the Background
Server system.

As part of the effort to port the Document Manager to the Sun Workstation the
Diamond Document Manager was modified to make use of the Database Server (see
Section 4.1).

'The Scovenger is a progrom that reconstructs the Document Store by scanning all of the
files used to store documents ond folders. It is useful if the tables internal to the
Document Store are domaged due to a system crosh or o software bug. See Semi-Annual
Technicol Report No. 5, BBN Report No. 5723 for more detailed information obout the
Scavenger.

2In order to improve performance, each Access Point workstation maintains o local coche of
recently referenced folders, documents, and atomic objects. The Document Store cache is
described in more detail in Semi~Annual Technicol Report no. 5, BBN Report No. 5723.

22

4.5 Yocoder Manager

At present Diamond wuses the LPC vocoding devices designed by Lincoln
Laboratory for voice i/o. The Lincoln vocoders are currently available only as
prototypes, and, consequently, are relatively scarce. In order to make voice more
widely available as a Diamond media, we have developed means for a collection of
Access Point workstations to (serially) share a single vocoder.

A Vocoder Manager process is responsible for managing the shared vocoder. It
runs on a server host to which the LPC vocoder to be shared has been interfaced.
The Vocoder Manager host is also equipped with an "“intelligent” modem with auto
dialing capability.

When an Access Point needs to use the vocoder, it interacts with the Vocoder
Manager to request use of the vocoder. For example, to output a voice passage in a
message being presented to its user, the Access Point sends the voice passage and the
telephone number for the user’'s telephone along with a "playback” request to the
Vocoder Manager. The Vocoder Manager then places a telephone call to the user via
the autodialer. After the call has been established, a path exists from the Vocoder
Manager through the vocoder, the modem and the telephone network to the user. The
Vocoder Manager can then output the voice passage through this path to the user.
When a vocoder is needed to input or edit a voice passage, the Access Point initiates
a similar sort of interaction with the Vocoder Manager; after the user is connected to
the vocoder through the telephone network the input or editing can occur. While
editing, the user sees a waveform and a ‘“bouncing ball” which follows the visual
waveform as he hears the voice. This is accomplished by a UDP packet stream between
the Voice Server and the Access Point, letting the editor know where the vocoder is in

the passage.

When low cost vocoders become widely available, dedicating one to each
multimedia workstation will be preferable to using them in this fashion. However,
we've found that sharing a vocoder through the Vocoder Manager works quite well.
There are probably several reasons for this. Voice i/o is required relatively
infrequently; this permits a single vocoder device to be shared among many users with
little contention for it. The telephone system is pervasive, and its use is universallv
well understood; hence using it for voice i/o is natural, and requires little user

training.

23

The Diamond Vocoder Manager demonstrates the feasibility of providing a voice
i/o capability for Access Points not equipped with vocoders. With suitable adaptation,
it would be capable of supporting voice i/o for low cost multimedia Access Points.

4.6 Access Point

A number of changes have been made to the Access Point during this reporting
period. They fall into three categories: performance enhancements, the addition of
error recovery mechanisms, and changes made to port the Access Point to the Sun
Workstation. In addition, the Diamond Access Point has been modified to take
advantage of workstation authentication to support workstation authentication (see
Section 4.3). The performance enhancements have already been described in Section
4.2

The error recovery mechanism, which had been designed earlier, has been fully
implemented in the Access Point. Three classes of errors are handled. First, there
are a set of errors indicating that the user is no longer properly authenticated. This
is usually caused by the Authentication Menager being taken down and coming back up
with no one being authenticated. This class of errors is handled by doing an
automatic reauthentication; a window is popped up telling the user what is happening,
then the reauthentication procedure ensures that the workstation is properly
authenticated (which may require asking the user to retype his password). After the
reauthentication procedure, the failed operation is retried. @ The second class of
errors are communication failures. The response to these errcrs is to inform the user
and ask if he wants to retry the operation or quit. The third class of errors is made
up of all other errors. These errors are simply reported to the user. If such an
error occurs in a multi—argument operation, the Access Point will reread the object to

ensure that it has a faithful copy of it.

The initial port of the Access Point to the Sun Workstation has been completed.
The most significant changes required were forced by three factors:

1. The Access Point Coordinator made much use of shared memory. Jericho
supports memory sharing among processes, but the Sun does not.

2. The Coordinator manipulated windows that it did not own. The Jericho
window system permits this, but the Sun window system does not.

3. The Coordinator and the Access Point tools were written assuming that the
window system “repairs’ any damage done to windows as they are uncovered

24

after being partially or completely buried by other windows. The Jericho
window system repairs window damage for application programs, whereas the
Sun window system does not. Instead, it delivers "“window damage” hints to
the application, signalling it that its window has been damaged. Window
damege hints can arrive at any time. Hence the structure of the user
interface implementation had to change to allow propagation of those hints
back to the higher levels, where the display could be reconstructed.

If Pascal had either an exception handling mechanism or the ability to pass
procedures as arguments, the problems posed by the third factor would have been
much easier to solve.

The changes to the Access Point that were required to make it run on the Sun
are typical of those that would be required to port any Jericho application that makes
extensive use shared memory and of windows and graphical interaction. Because we
feel the problems we encountered in porting the Access Point are generic in nature,
we describe them in Section 5.2 which is concerned the issue of Sun / Jericho
compatibility.

4.7 Multimedia Editor: EditDoc

Semi—annual technical report No. 5 reported on the design and initial
implementation of Editdoc, the Diamond multimedia editor. A number of improvements
made to EditDoc during this reporting period are described in this section.

4.7.1 Image Editing

The image editing capabilities of EditDoc have been significantly enhanced by the
addition of the ability to scale and rotate images by arbitrary amounts. Scaling is
specified by "dragging” a corner of the image with the mouse. Rotation is specified by
placing a line segment on the image and moving one of its end points around the
other end point. Both the rotation and the scaling operations are quite fast and are
nearly able to follow the mouse in real time. The technique used to rotate and scale
images are described in Section 5.1.

The image editing capabilities have been extended by adding the ability to edit a
part of an image. Previously most image editing operations (e.g., scale, rotate, reflect)
had worked only on the entire image. Finally. the ability to “paint” and erase images
with a variety of brush shapes and textures has been added.

25

4.7.2 Spread sheets / Charts

A new object type, electronic spread sheets, has been added to Diamond. This
involved integrating support for the composition, manipulation and presentation of
spread sheets into EditDoc, and augmenting the representation of muiltimedia
documents to include the spread sheet data type.

Support for spread sheets includes support for graph and chart representation
of spread sheet data, as well as for tabular representation of it. That is, we have
combined the ability to compute models using a spread sheet with the ability to
automatically chart values in the spread sheet. There are several alternative ways to
chart data including bar, line, point and pie charts.

A spread sheet / chart occupies a rectangular area of data. The rectangular
area may be split up into separate panes in which separate areas of the spread sheet -
or a chart based on values in the spread sheet may be viewed. In its viewing form, a
spread sheet / chart is just a table of values, possibly with ruling lines to give
emphasis to groupings of 'data and/or a chart. Figure 2 shows a spread sheet in the
form that a reader of a message would see it. In its editing form, a spread sheet /
chart looks like a standard spread sheet with labels for rows and columns and/or a
standard business chart.l Figure 3 show the same spread sheet / chart in the form
that the author of a document would see it. Charts have the same appearence in
viewing and editing forms.

A rich set of functions is available in the spread sheet covering the following
areas:

o Arithmetic Functions:

Sum(of list), Average(of list), Min, Meax,
Round, Ceil, Trunc.

o Transcendental Functions:
Ln, Exp, Log, PWRofTEN.

o Trigonometric Functions:
Sin, Cos, ATan2.

o Logicel Functions:

26

Dozument: >Foradick)SUN Demo Documents> 10

Date: 18 Dec 84 13:185~EST
Tot @dpe

[Fro-t Tom!| inson

two points:

absolute values.

Sclect with shift-3

Below 1s an amalysis of the following approximation to the distance between

. v Kk{du=dy)dy # (= dy <= dx
d + dy :dx#(-1)du+ — .

Values in other octants may be found by interchanging dx snd dy and/or using

K:

4.5231E-8
1.8400€-4
2.8807E~4
2.6065E~4
2.2046E~4

#9701 0.2 8.3 0.4 65 6.6 07 68 093 1 1.1
dy

0.019

9.905

0.000

~0.005

0.2 0.4 0.6 0.8 1 1.2

oy

~9.3563

O 7, e, e gy g

i

A IV

N
-t

I+

o

K

MMM

DN

IHIHIMHIHIHIHITHITITIN

N

N
N

I T I R T

DN

i
4

Figure 2. A Spread sheet / Chart in Viewing Form

27

Document: >Forsdick)SUN Demo Documents>10 -

Date: 18 Dec 84 13:S5-EST

Prom: Tom| inson
To1 fdpc

Below is an analysis of the following approximation to the distance between

two points:
i v k(dx=ay)dy 6 (= dy (= dx
dx + dy :30(-t)dy+ - .

Values in other octants may be found by interchanging dx and dy snd/or using
sbsolute values.

Select with shift-3

e

DHOMIHHHIIHIHIIHITTIITDITITEIay i

DM

..........) .
. errors29

2 AMMIITHIHHIMINN

-/ De-o >1o PR
1 (F) I18(AZ+82)+J13C2+I2 = 1.0000

N
o

- [F,
L]

Figure 3. A Spread sheet / Chart in Editing Form

28

And, Or, Not, If.
o Finance Functions:
Compound, Annuity, NPV.
o Date Functions:

Sum and Difference.
4.7.3 Text

A new sub-editor for text has been implemented. The goals for this new sub-
editor were twofold: to dynamically format text as it is being entered and edited, so
that the format is elways accurately displayed in the EditDoc window; and, to greatly
expand the formatting options available.

The new text sub-editor supports the following features:

o There is one view of text. Text is dynamically formatted as it is entered
from the keyboard. Justification and filling are done as keys are typed.

o Formatting environments are supported so that an author can compose fully
formatted documents. There is a set of default environments (Paregraph,
Verbatim, Enumeration, Itemization) that can be used as the basis for
additional user defined environments.

o Document structure is preserved so that partially completed documents and
cooperatively developed documents can be composed.

o Font specification is by three parameters: Family, Style and Size.

As a first step toward developing a collection of fonts, we have modified our
font edi\ting tool, EditFont, to accept a font and to produce italicized and
bold versions of the font. The result of italicizing or "boldifying” a font is
generally a reasonable approximation to the italic or bold version of the
font; the font editor can then be used to "fine tune” individual characters
in the font.

o Editing actions may be performed by using the mouse to point to the text
and make menu selections, and/or by means of keystroke commands which
are similar to the EMacs command set.

We have plans for improving the way in which text objects are included in multimedia

documents and will pursue these plans in future work.

29

4.7.4 Graphics

The Graphics handling capabilities of EditDoc have been enhanced to include
support for polygons and for bitmap elements. A bitmap element is a rectengular
entity which contains a bitmap image. Typically bitmep elements are added to graphics
objects by cutting & portion of a bitmap image object and pasting it into a graphics
object (see Section 4.7.5). Bitmap elements are often useful as a background for a
drawing.

In addition, means have been provided to control the way objects are aligned
with respect to one another. For example, it is possible to align the tops, bottoms,
right side, left side, or centers of a set of specified elements in a graphical drawing.

4.7.5 Clipboard

The notion of a “clipboard”, similar to that found in the Apple Lisa and
Macintosh systems, has been added to EditDoe. It is now possible to cut an item
(either a whole object or part of an object) from one document and paste it into
another (or the same) document.)

Unlike the Lisa and Maclntosh implementation of clipboards, the number of items
that a Diamond clipboard can hold is determined by a user preference setting. The
clipboard is managed as a stack. Items that are cut are “pushed” onto the stack.
When an item is cut and the stack is full, the oldest element on the stack is discarded
to make room for the new item to be added. When pasting an item into an object, if
the desired item is not on the top of the stack, the user may cycle . .rough the
clipboard stack until the desired item is reached.

\

The cut and paste operations work both within a single given data type (e.g..
cutting from a graphics portion of one document and pasting into a graphics portion
of another) and between two different data types (e.g., cutting from a graphics portion
of one document and pasting into a bitmap portion of another). Of course, when an
object of a given type on the clipboard is pasted into an object of a different type,
conversions are performed on the source object to make it conform with the
destination object. In some cases this may be infeasible, for example, converting an
image into text.

30

4.7.8 Miscellaneous

New commands have been added to EditDoc which enable a user to see the "next”
or "previous” document in the “current” folder. This makes it easy to read a set of
documents in a folder one at a time without having to explicitly close the current
document and open the next (or previous) document. This is particularly useful when
reading new messages from the InBox folder.

4.8 Import / Export Manager

The Import/Export Manager is responsible for exchanging multimedia messages
with other multimedia systems. To send a message, it first translates the message into
a standard format for transmission, and then sends the message. The transmission
format is part of the emerging DARPA multimedia protocols.

At the July meeting of the DARPA multimedia message system community, an
agreement made to between ISI, SRI, and BBN to convert from RFC 759/767 format for
multimedia message exchange to a variation of that format specified by SRI. It was
agreed that the conversion should be completed by October 1, 1984. We have modified
our Import/Export Manager to transmit the new format and to receive either format.

The new multimedia format specified by SRI is deficient with respect to text
protocols. It does not allow nested structures (like an enumeration within an
itemization within an enumeration). We have designed an extension to the format and
the software to implement that extension. We have not implemented the extension yet.

The format is also deficient in not allowing font specifications.

The Import/Export Manager is the only major component of the Diemond system
that has not yet been ported to the Sun Workstation. The major problem is that the
current Import/Export Manager uses the BackgroundServer and background FTP
requests to receive/deliver messages from a remote MPM (we are using ISI's MPM).
Most of the manager is concerned with translating between formats, and that part will
port to the Sun easily. The delivery mechanism will not port easily. Our current plan
is to make use of the Sun implementation of the MPM developed at SRI (which 1s not
yet available), and modify the delivery part of the Import/Export Manager to use the
MPM on the same machine.

31

4.9 Papers, Documentation, Meetings, and Presentations

During this period, we developed the following material for describing the
Diamond system:

0 A new video tape describing the goals, architecture, hardware base, user
interface and use of Diamond.

© “Future Workstations and Applications”, H. C. Forsdick, NOAA Conference on
Future Directions in Data Communications, Denver, CO, July 1984.

o "“The Diamond Multimedia Message System”, H. C. Forsdick, Federal Computer
Conference, Washington, D. C., September 1984.

o "Diamond: A Multimedia Message System Built Upon a Distributed
Architecture”, R. H. Thomas, H. C. Forsdick, T. R. Crowley, G. G. Robertson,
R. W. Schaaf, R. S. Tomlinson, V. M. Travers, to be published in IEEE
Computer, Summer 1985.

o "The Diamond Multimedia Document Editor: User's Guide”, BBN Report No.
5724, (DRAFT) July 1984.

o "Multimedia Mail Meeting Notes”, H. C. Forsdick, Minutes of a meeting about
experimental multimedia message systems held at BBN on 23-24 July 1984,
NWG RFC 910.

In addition, we attended the IFIP 6.5 Working Conference on Computer Message
Systems held at Nottingham England and presented a paper on Diamond titled “Initial
Experience with Multimedia Documents in Diamond”. The paper was published in the
conference proceedings, Computer—Based Message Services, Hugh T. Smith, editor,

North Holland, 1985. A slightly revised version of this paper was also published in the
September 1984 issues of the IEEE Quarterly Bulletin on Database Engineering.

32

5. THE JERICHO JADE SYSTEM

5.1 Image Manipulating Operations

Fast algorithms for scaling and rotating bitmap images by arbitrary amounts have
been developed, and routines which implement these algorithms have been added to
the Jade ImageOps library. The EditDoc multimedia editor makes use of these image
manipulating routines to permit users to rotate and scale the image components of
multimedia documents (see Section 4.7).

Image scaling is done by adding or removing rows and/or columns of the bitmap
image to achieve the desired size image from the original image. When a row or
column is added, it is a duplicate of the adjacent row or column. When a row or
column is removed, none of the adjacent rows or columns are adjusted. The added
(removed) rows or columns are distributed evenly over the extent of the image so that
effect of enlargement (reduction) is applied to the entire image. Figure 4 illustrates
how this is done. When an image is scaled in both dimensions, the scaling is first
done in one dimension and then in the other. In interactive image' editing operations,
to preserve as much accuracy in scaled images, we always start from the original
image and scale up or down from it. Figures & and 6 show examples of an image that
has been enlarged and reduced. In one case the aspect ratio of the original has been
preserved by forcing the scaling in the horizontal dimension to be a linear function of
scaling in the vertical dimension. In the other case there no linkage enforced on

scaling in the two dimensions.

The algorithm for rotating bitmap images through arbitrary angles assumes that
an efficient means exists to transfer an arbitrary rectangular region of a bitmap image
from one location to another. Also assumed is a method of rotating images through

multiples of ninety degrees,.

The rotation algorithm is based on the fact that a rotation trensformation can

be decomposed into a sequence of three shear transformation such as the following:

33

Enlarge

bad 4

ot 2=

- -0

-y -

- - (M

-\ m (N

-4t -t ot

- ® -®
® ®
~ o
0 0
L4 n
hd -
™) ™
o o
- Lol
(.11 ol ®{

Lol

x0T 300 >

34

Figure 4. Scaling of BitMap Images

Preserve Aspect Ratio

original

Enlarged

Figure 5. Reduction and Enlargement of an Image, Aspect Ratio Preserved

35

Arbitrary Aspect Ratio

Stretched§
Vertically

Stretched
Horizontally

Figure 6. Reduction end Enlargement of an Image, Arbitrary Aspect Ratio

36

(cos(x) sin(x) (1 O) (1 b) ('l 0)
-sin(x) cos(x)) - a 1 o 1 a 1
Where a = (cos{x) — 1)/sin(x) and b = sin(x).

Transformations such as shearing and rotation are mathematical operations
which cannot be implemented exactly when the coordinates of points must be integers.
Thus the implementation of a shearing operation is faced with the same problem as the
implementation of a line-drawing operation. The solution is the same: the transformed
points are moved to the nearest (in some sense) available raster position. The effect
of this on a horizontal shearing operation is illustrated in Figure 7.

Horizonta! Shear for a2 = 0.1

Figure 7. The effect of a horizontal shearing operation.

In fact, the necessity for moving pixels by an irtegral number of raster positions

37

————

is precisely the reason that this algorithm is efficient; many pixels must be moved by
the same amount and we have postulated the existence of an efficient means of doing
this. All pixels in a given row move by the same amount and, furthermore, several
adjacent rows also move by the same amount. The smaller the angle of the shear is,
the larger the size of the block is. As the angle approaches 45 degrees, the block
become less high until at 45 degrees, each block is just one pixel high. The picture
for vertical shear is similar except, of course, for & change of axes.

For maximum efficiency, as many pixels as possible should be moved in each
operation. This means that for angles from 0 to 45 degrees, the first shear should be
horizontal and for angles from 45 to 90 degrees, the first shear should be vertical
For angles outside the range of 0 to 90 degrees, other algorithms should be employed
to rotate by +90, 180, or —-90 degrees followed by the present algorithm.

It is also necessary for the discontinuities in the first and last shearing
operations to be properly positioned. This is especially true for small angles. The
reason is that if the discontinuities in the two shearing operations occur at the same
places, adjacent pixels which straddle the discontinuity will end up being separated by
two positions. To avoid this problem, the discontinuities are displaced so as to be
maximally separated at the middle of the picture.

Figure 8 illustrate the effect of rotating a bitmap image through a small angle.
(Notice that the rear edge of the backpack has been made vertical.) Because this
image started with a fairly large amount of noise in it, the distortions due to the
rotation process are not very noticeable. Images with greater regularity or finer

features are more noticeably distorted.

5.2 Compatibility with Sun Workstations

The execution environment provided to application programs by the Jericho Jade
and Sun Unix systems differ in two ways which have had a significant impact on
porting applications from Jericho to the Sun:

1. Jericho permits processes to share address spaces, and the Sun does not;

2. The Jericho window system automatically repairs all "damage” done to a

38

Figure 8. The effect of rotating an image through a smeall angle.

window when the window is unburied?, and the Sun does not. Rather it
passes a list of the damaged areas of the window to the application program
which is expected to repair the damage.

This section summarizes how we dealt with these differences in porting Diamond to the

Sun.

Our goal et the outset of the porting effort was to maintain a single set of
sources for Diamond which could be compiled either for Jerichoc or for the Sun.
Diamond makes extensive use of the Jade program libraries. Furthermore, many of the
places where changes had to be made to handle the differences between Jericho and
the Sun were in the libraries. Consequently, to meet our goal of a single set of
sources it was necessary to audit the Jade software and, where necessary, to retrofit

it to be compatible both with the Sun and Jericho environments.

SThose parts of the window that were under another window are considered *“damaged" and
need to be "repaired” by restoring their current contents.

39

———EEEEE

The fact that Sun processes do not share memory forced a number of substantial
changes throughout Diamond. The database mechanisms used by the Document Store
Menager and the Authentication Manager, and the document store cache mechanism
used by the Access Point (see Section 4.4) made extensive use of shared memory.
These mechanisms have been redesigned to use a Database server process (see Section
4.1.2). The Coordinator component of the Access Point made use of shared memory to
control the set of processes used to implement various Access Point functions. That
control mechanism had to be redesigned to operate without shared memory. Various
Diamond components use a synchronization mechanism to coordinate their internal
activity. This synchronization mechanism was implemented on Jericho using shared
memory in order to achiever maximum efficiency. The implementation of the
synchronization mechanism was completely redesigned to make use of a
Synchronization Server process, while the interface to it provided for application
programs was preserved.

Differences in the window systems between Jericho and the Sun were handled in
two ways:

1. The Jade Windowlib library, which is the program library application such as
Diamond use to manipulate display windows, was ported from Jericho to the
Sun. This provided an application interface to window manipulating
functions for the Sun that was identical to that on Jericho. Consequently,
the parts of a program that do routine window manipulations do not have to
be modified when the program is moved from Jericho to the Sun.

2. The notion of "window hints” was expanded to include a new "window has

been damaged” hint*. This new hint makes it possible for an application to
discover when one of its windows has been damaged and to take appropriate
action to repair it.

In order to maeke various parts of interactive applications, such as the Diamond
Access Point, responsive to window hints (damaged and changed hints in particular),
all user input functions (i.e., uses of pop up windows, menus, forms, scrolled objects,
and the Access Point library) must be prepared to return control to the application
when an unexpected message (i.e., any non-character, such as a window hint) arrives.
During this reporting period, we modified all of our basic user interface libraries and

the various parts of the Diamond Access Point to deal with these hint messages

4A window hint is o signal sent to a procese by that window system that on event relevont
to o window of interest to that process has occurred. See Semi-annual Technical Report No.
S for more details.

40

correctly.

This set of changes was substantial, but was forced on us because of the nature
of the Sun window system, which does not maintain off-screen images of partially
buried windows. When a partially buried window is exposed, damaged hints are sent to
the process owning the window, and that process is expected to repair the damage.
The problem for an application, such as the Access Point, is that these damage hints
may arrive when some very low level user interface function, such as the one that
pops up a menu and gathers the menu item specified by the user, has control. The
low level functions have no notion of what is actually on the screen. Hence they have
to propagate the hint up, possibly through several layers, to the application, which
can then reconstruct the display to repair the damage. Since Pascal does not have
an exception mechanism or the ability to pass procedures as parameters, in porting
the Access Point, we were forced to restructure all the layers of the user interface to
make it possible to pass these hint messages back up to higher levels, and then, after
the hints have been handled, to return to the lower levels without losing any context.

41

6. THE JADE PROGRAMMING ENVIRONMENT

8.1 Network protocols and IPC

The interhost interprocess communication facility has been successfully ported to
the Sun. Moving the IPC facility required some minor changes to both the IPC and the
underlying TCP/IP protocol support. These changes are described below.

The Sun TCP implementation supports the notion of "continuous listening” ports.
As the name suggests, a continuous listening port is one which remains in the
listening state at all times, even while a connection to the port is being established.
Without continuous listen the application process using the port must “recycle” it into
the listening state after a connection attempt is handled. This means that there is a
(usually brief) period of time during which the port is not in the listening state, and
during which attempts to connect to it from remote processes must fail With
continuous listening, attempts to connect to the port while another connection
attempt is in progress will not fail due to absence of the listening port. Sir :e
listening ports are typically used to support “services”, the continuous listening port
mechanism makes sure that the service is continuously accessible from the network.

The Jade TCP implementation, which previously did not support continuous
listening ports has been augmented to include the notion, and the Jade TCP interface
library for both the Jericho and the Sun has been extended to explicitly support the

the notion of continuous listening ports.

In addition, the IPC implementation has been changed to use continuous listening
ports. This was done so that the IPC manages its TCP connections the same way on
the Sun and the Jericho. Before this change, the IPC was written to explicitly recycle
its listening port. The IPC uses a continuous listening port, and no longer explicitly
recycles the port. In addition, the IPC handled failures to connect to other IPCs by
immediately retrying a few times in order to dealwiththe possibilitythatthe failurewas
due to "dead time” at the remote IPC while its listening port was being recycled. This
was not changed, because the' IPC may need to communicate with other IPCs which

must explicitly recycle their listening ports.

The ability to broadcast messages to all hosts in a Diamond configuration plays
an important part in the Diamond implementation. In particular, it is used by the IPC

43

to locate objectss.

With the addition of Suns on an Ethernet, the Diamond development configuration
now is distributed across two local networks, the Jericho Fibernet and the Sun
Ethernet, which are connected by a gateway. We expect that future Diamond
configurations will also span several local networks. For Diamond to work with such a
configuration the ability to broadcast must be extended to span the networks which
comprise the configuration. To deal with the short term problem of two networks
connected by a gateway, we have modified the Jade IP implementation so that packets
broadcast on the Jericho fibernet are propagated to the Sun ethernet, and have
modified the interface to the Sun IP to that. We expect that it will be necessary to
refine the broadcast propagation mechanism as the topologies of configurations
become more complex.

In experimenting with conﬁgﬁrations spanning two networks we encountered a
problem due to the apparent inability of the Sun network code to reassemble more
than 2 fragments of an IP datagram back into the datagram. The problem was
discovered while sending IPC small messages from a Jericho through a gateway to a
Sun. The maximal size of an IPC small message, exclusive of headers, is 1240 bytes.
Small messages are t&picany sent as single I[P datagrams. The Jericho 1IP
implementation had been set up to fragment IP datagrams into 576 byte fragments for
transmission through the gateway that connects the Jericho Fibernet to the Sun
Ethernet. We discovered for IPC small messages sent from a Jericho to a Sun, that
messages fragmented into two or fewer fragments were properly received by the Sun
but those fragmented into three fragments were not. This problem was corrected by
“"reconfiguring” the Jericho IP to fragment IP datagrams into larger fragments so that
a maximal IPC small message would be broken into at most two fragments.

6.2 Software State Database

During the past six months, the Software State Database system (hereafter
referred to as SoftwareState) has become a regular part of our development
environment. Distribution of new software is done exclusively through the mechanisms

provided by SoftwareState. In addition to improving the robustness of the original

5300 Semi—-Annual Technical Report No. 4, BBN Report No. 5722 for detailn.

44

operations, a number of significant improvements have been made to the system.
These include:

o The inclusion of dependencies between files into the database.
o The use of dependencies to check the consistency of an operation.

o Separate create dates for each file system being maintained by
SoftwareState.

o Support for working on a large system in a private environment.

o Integration of the Sun workstations into SoftwareState.
6.2.1 Dependencies

Within a complex software environment, dependencies naturally arise between
modules. Object files depend on the source files they are compiled from and on the
interface of the libraries they use. In our environment, assembly language files for
the Sun depend on the object files they are translated from.

When a file is Installed, SoftwareState analyzes it to automatically determine
which files it depends on. These forward dependencies are entered into the database
elong with the symmetrical backward dependency. (That is, the database explicitly
contains the fact that object A uses B and the distinct but related fact that B is used
by object A.) These dependencies may be perused by a user or used by the system to
check the consistency of a requested operation.

SoftwareState recognizes three different kinds of dependencies:

o Time. A time dependency implies that the ‘dependent file must have been
created at a later time than the file it depends on. An object file has a
time dependency on the source file it is compiled from.

o Interface. An object file has an interface dependency on a library which it
uses. The object file must be recompiled if the interface changes, but does
not need to be recompiled if only the implementation part of a library
changes.

o Simple. A simple dependency is used to break a loop in an interface
dependency cycle. It is intimately related with the compilation strategy used
in the Jade environment to handle dependency loops within a set of
libraries.

Pascal object files and Sun assembly files are analyzed to determine the files

45

AR

they use. Dependencies which cannot be derived automatically could be entered into
the database by hand. There are several complications with regards to dependencies.

o Interfaces. In the Jede environment, the implementation of a library resides
in the same file as its interface. In SoftwareState, we wish to be able to
distinguish when only the implementation of a library has changed (thereby
recognizing that programs which use the interface do not need to be
recompiled). The write date of the file does not contain enough information.

To deal with this problem, the SoftwareState system maintains an /nterface
Write Date. SoftwareState calculates a value for the interface of a library
when it is Installed. This value is a single integer derived from a CRC of the
characters in the interface. When a new version of a library is Installed,
SoftwareState recalculates the CRC of the interface. If the CRC value has
changed, then the library gets a new Interface Write Date. Other files which
use the changed library will need to be recompiled. A programmer or tool
can determine what recompilations are necessary by comparing the write
date of an object file with the interface write date of the libraries which it
uses.

o Dependency Loops. The simplest example of a dependency loop is a library L1
which uses a library L2 in its implementation. Library L2 in turn uses
library L1 in 4ts implementation. This creates a problem in the Jade
environment because there is no acceptable compilation ordering. L1 must
be compiled before L2 and L2 must be compiled before L1. In order to get
around this problem, it is possible to specify that library L1 uses the
interface contained in the source of L2 rather then in the compiled version
of L2. L1 can then be compiled before L2.

The consequences of this for the dependencies contained in the database
are as follows:

Compiled library files typically have interface dependency on other
compiled library files (L1.Library depends on L2.Library). When a
library explicitly uses the interface in the source file of another
library than the interface dependency is on the source file (L1.Library
depends on L2.Pascal).

Despite the fact that a library L1 is compiled using the source version
of another library's interface, when it is run it will use the compiled
version of that interface. To reflect this fact, a Simple dependency is
added from Ll.Library to L2.Library. This ensures that a check to see
if all the dependencies for L1 are satisfied will also check all the
dependencies for L2.

8.2.2 Using Dependencies

The simplest use of dependencies is to make them available for viewing. A
programmer contemplating a change to the interface of some library can look in the
database and find every file which uses it. This is especially useful if the interface
change requires editing the dependent files rather than simple recompilation.

46

SoftwareState checks dependencies on CheckOut, Checkiln and Install. When some
constraint is not met, SoftwareState will warn the user. However, a user may ignore
the warning and proceed with the operation. For example, it is possible to Install a
new version of a file on the Jericho without first creating and installing the dependent
Sun assembly file. This allows us to experiment with some new feature on the Jericho
before going through the additional overhead of creating a version for the Sun. After

experimenting, we can go back and determine what needs toc be done to bring all files
up to date.

The constraints for each operation are described below.

o CheckOut. SoftwareState checks to make sure that all files which have time
dependencies on the files being checked out are included in the set being
checked out. The simplest example is requiring that the user check out the
object file along with the source of a library or program.

o Install. Install checks time and interface ccnstraints. This is to prevent the
release of incompatible versions of interfaces and the programs which use
them. It will also catch the failure to compile some source file.

0 Checkin. CheckIn also checks time and interface constraints. This is
because a user may wish to Install some version for experimental use, but a
Checkln operation presumes that the programmer is finished with the file
and should ensure that all constraints are satisfied.

8.3 IPC Monitoring Facility

The IPC monitoriag facility is & tool which makes it pos: “le to observe
interactions among components of a distributed application, such as Diamond. The
interactions are recorded by the monitor as the monitored application executes, and
can be observed by a user in (near) real time or can be repeatedly played back to
study operation of the application. The momitor understands both the higher level
protocols used to support interactions among components of distributed applications
and the lower level protocols. This makes it possible to parse and displaf the
contents of interprocess messages as well as to display the patterns of message
interactions. Because the execution of a distributed system, even over a relatively
short period of time, can involve a large number of interactions, the IPC monitoring
facility supports a very flexible "message filtering” capability through which a user
can specify those interactions that he is interested in observing. We expect that the

JPC monitoring facility will be extremely useful in the debugging and demonstration of
distributed applications.

47

The IPC monitoring facility is composed of the following four types of component
processes:

o [PCMonitor ~ This process supports the user interface to the IPC monitoring
facility. Through this interface, a user may add and remove monitoring
filters, enable or disable monitoring on the distributed host computers, and
control the display of monitoring information tha! is being collected and
retrieved by other components of the IPC monitoring facility.

o MetaMsg Manager -~ This process runs on the same host as the IPCMonitor
process and manages the communication between that process and the
MonitorData manager processes that sre distributed throughout the local
area network. The MetaMsg manager distributes commands from the user
interface (e.g. enable monitoring, add filter) and receives the monitoring
information that is being collected by the remote [PCServer processes. This
monitoring information is received in the form of meta-messages which are
recorded in a log file and are forwarded upon demand to the IPCMonitor
process so that the information that they contain may be displayed to the
user.

o MonitorData Manager - Just as the MetaMsg manager manages the
communication between an IPCMonitor process end the distributed
MonitorData manager processes, the MonitorData manager process manages
the communication between a local [PCServer process and all of the MetaMsg
manager processes that exist in the local area network.

o IPCServer - The main responsibility of the IPCServer is the transport of
interhost messages. A portion of the IPCServer, however, is devoted to
supporting the IPC monitoring facility. This support entails managing a date
base of active monitoring filters, matching messages against these filters in
order to determine whether a message is being monitored, and sending
information about the monitored messages back to the monitoring program.

As of the end of the last reporting period, the initial design of the IPC
monitoring facility had been completed along with initial implementations of both the
MonitorData manager component and the IPCServer modifications to support

\

monito™g.

During this reporting period, the initial implementations of the IPCMonitor and
MetaMsg manager components were completed and the first version of the IPC
monitoring facility was released. Fo; the remeainder of the reporting period since the
monitor's release, our work has focused on improvements to the program's

performence and enhancements to its user interface.
6.3.1 IPC Monitor Scenario

This section presents a series of figures that illustrate the use of the IPC

48

Monitor. The IPC Monitor maintains a dynamic display which shows interactions among
the components of the distributed application being monitored. The figures presented
are software “snapshots" of the display as a short Diamond scenario was being
monitored. The scenario chosen is one in which Diamond retrieves a document from
one of its document stores. This involves retrieving the DocStruc for the document
(i.e., the data structure which defines the document) and all of the atomic objects
referenced by the DocStruc.

Figure 9 shows the display of the IPCMonitor program, immediately after the
document retrieval has started. The three circular objects represent host computers.
The Schaaf host is shown at the top of the display with the Jade and Diamond hosts
being shown in the lower left and lower right, respectively.

The ovals shown inside the hosts are processes involved in running the Diamond
application. The lines drawn between processes and hosts indicate currently active
communiéation paths. Note that there does not currently exist an active path between
the Jade host and the Diamond host.

The shaded ovals represent processes on the path of a message that is currently
in transit. In this illustration, a message is in transit from the EditDoc process on
the Schaaf host to the DocStore process on the Jade host. The message itself, is
represented by the small circular icon containing an "S” shown next to the DocStore
process on Jade. The “S” indicates that the message is a small message, and is
therefore contained in a single network packet. Other types of messages of large
messages ('L”) and IPC protocol messages (“I").

The area beneath the hosts is used for the monitoring program's control
switches and status indicators. The Record switch is used to request the display of
monitoring information in (near) real time as the program being monitored executes.
As this information is displayed, it is also recorded in a log file. The Play switch is
used to request play beck of a log file. The shading for the play switch indicates that
the monitoring facility is now in playback mode. The Pause switch is used to freeze
the action in the area above the control switches and is shown to be on. The Single-
Step switch is also on. This causes the monitoring facility to pause whenever a
message in transit reaches its destination.

The Speed switch is used to set the rate at which the monitoring display

49

cnanges. Running at a faster rate allows the monitoring facility to keep better pace
with the executing application, but may be too fast for the user to follow.
Accordingly, the user may adjust the rate to whatever is comfortable. The current
setting is a little more than one-half of the maximum rate and is indicated by the
degree of shading shown in the switch indicator.

The Log Size status indicator shows the current position of the monitoring
program in the log file being played back. In record mode, this status indicator gives
a rough idea of how far the monitoring facility has fallen behind execution of the
program being monitored. Currently, a little more than two-thirds of the log file has
already been replayed.

Figure 10 shows the contents Sf the message from the EditDoc process to the
DocStore process. The message contents include fhe unique identifiers (UIDs) for the
source and destination objects, the type of operation that the source process is
requesting to be performed on the destination object, and the request identifier
information that is associated with the message. This particular message is a request
from the EditDoc process to perform a ReadValue operation on the indicated DocStruc.

As the message was in transit from EditDoc to the DocStore, the user caused its ~
contents to be displayed by holding down the left button of the mouse, positioning the
mouse cursor above the icon for the message, and then releasing the button. Holding
the left button froze the action, and releasing it caused the message contents to be
displayed. Clicking the right mouse button at this point would cause the message

contents to be taken down and would unfreeze the display.

It a more detailed display of the message contents is desired, the user may click
the left mouse button while the mouse cursor is positioned over the messege icon.
Doing this, changes the display to that shown in Figure 11 in which the various fields
of the message are displayed. The name of the field is shown in the first column and
the value of the field is given in the second. For structured values (i.e., records or
arrays), an indication is given that the field value is structured. An example of this
is the Monitoringinfo field in Figure 11. The components of a structured field may be
displayed by asking for More Detail on that field. The type that is associated with
each field may be displayed by requesting Verbose mode.

The request by the EditDoc process to perform the ReadValue operation on the

50

T

Report No. 5901 Bolt Beranek and Newman Inc.

DocStruc cannot be satisfied until the DocStore process ascertains whether the
EditDoc process is allowed to read the referenced DocStruc. The DocStore process
checks this by sending an AuthBindingOf request to the AuthServer process on the
Diamond host. Transmissior of this message is shown in Figure 12. Note that as a
result of this request, a communication link between the Jade and Diamond hosts is

indicated.

In Figure 13, we see the response to the AuthBindingOf request from the
DocStore process. Response messages are represented by an icon that is slightiy
different from the one used for request messages. Requests are represented by a
white circle containing a black letter, while responses are represented by a black
circle containing a white letter. The message contents for a reply is also different
from that for a request in that the messege contains reply code information. In this
case, the reply code is SuccessComplete which indicates that the operation succeeded
and that the EditDoc process is allowed access to the DocStruc whose value it
requested. ‘

Figure 14 shows the transmission of the response to the original ReadValue
request from the EditDoc process. Figure 15 shows the fields that are in this
response message. This display was obtained by asking for more detail on the
response message icon.

After the EditDoc process receives the value of the DocStruc object, it
determines all of the atomic objects that are referenced by the DocStruc. These
objects are then requested one at a time from the DocStore where they are located.
Figure 16 shows a request from the EditDoc process to the DocStore process on the
Jade host for a particular atomic image object.\ Upon receiving this request, the
DocStore makes sure that the EditDoc process is allowed access to the object in the
same manner that access to the DocStruc was checked. If the EditDoc process is
found to have the proper authorization, the value of the atomic image object will be
returned. This last step of showing the response containing the value of the atomic
image is shown in Figure 17. Notice that the response is in the form of a large

message, indicated by the "L"” inside the message icon.

51

./-q\'ﬁ e .

-
-

e | Docdtore)

-

SV -

/—5‘\‘ '|l'. ‘/,.-—M\‘
IPCServer f—— FuthSercer |
\—-—l‘/ ‘__—/!

- Rkt - -
- S
Ve R

D stzrnd

= .. >BSchaaf Select with shiit-1V

L Pauge Y InSingle-ttec

[Fgnord

Vj

TTleg Teae ST

r Lipeed

]

Commands: Add Filter, Disable Monitors, Enable Monitors, Quit IPCMonitor,
Remove Filter, Show Filter, Toggle Debugging

Figure 9. DocStruc ReadValue request 52

: YRSchaaf Select with shift-Iv

Exec-IPCMonitor - -
/r‘—_\‘\‘ . " ,_..-/ --\-~.~"_
- o x»tmc 2 - .'}I' ‘\'.. "" -'/q‘\h o
Q, Daciters %) 3 T { Docttore |
, Source UID = Process:192.1.3.117:700:212] / A
; Dest UID = DocStruc: 192.1.3.119:202:85 |/ i
i Operation = Readvalue]
, lobal Request ID = 192,1.3.117:700:213 |—— Autrierver |
i equest ID = 192.1.3.117:700:213 . IS
) 3 !
.'"" ."'~
e . T s
. _.'---——-,/- _-/’”.
[Record J Sivionglesiteg o |
[. el “Speed J y j
Commands: Add Filter, Disable Monitors, Enable Monitors, Quit IPCMonitor,
Remove Filter, Show Filter, Toggle Debugging

Figure 10. DocStruc ReadVaiue request - gxaessage description

MetaMsg Display- - =

' E.xec-lPCMoniwr,_ Ty / e

" This frame: contains 12"

RIS

ifems

>RSchaaf - Select. with shif

BRI MET I A AT N

esaes First Item

[SrcProcName "Edithoc’

SrcProcPid —'Schaal139*

SourceVUID Process: 192.1.3. 1171700:212
DestProcName '‘DocStore’

DestProcPid ‘Jade: 16 _
DestVUID DocStruc: 192. 1.3. 119:202:55
MsgType Request

GlobalRequestID 192.1.3.117:700: 213
RequestID 192.1.3.11723700:213
Operation Readvalue

MonitoringInfo <RECORD>

MsgHeader <RECORD>

eees Lagst Item

-y

:

Z
7

NN
IRENEN

Commands: Less Detail, More Detail, Terse, Verbose or menu

Figure 11. DocStruc ReadValue request - gz-t.ailed information

4 DRSchaaf - Select with shift=IV

/ \
/’F*\\. v./ . l\
(\:::j:L/A ;\de%hkr) \
v j‘\“———” t
) Vo 3
L\ |
\I f EditDoc 'l \-.‘ ',"I ,'
kN 3&!
s -
‘\ e /-g\\.
~. [1PCServer) y
SN
/ \,
/ R
A,
K "
."‘..

Source UID = Process: 192.1.3.119:213: 78|
Dest UID = AuthData:Generic
Operation = AuthBindingof

Globa! Request ID = 192.1.3.119:213:79
|Request ID = 192.1.3.119:213:79

|
|

Commands: Add Filter, Disable Monitors, Enable Monitors, Quit IPCMonitor,
Remove Filter, Show Filter, Toggle Debugging

Figure 12. AuthBindingOf request ' o5

~rn ~v.+ >RSchaaf:- Select. with: shift

/,- '..‘\

/ \\
i smond \')\ ',(Sho-iotar ’))
~— '.\ /.' - g \

’ \

\ J
\ tﬁ“} Voo /
/

! ._.-/) \". .'l".. _;"
\ \‘\\s ’_." /
\ /“'y\‘ /
\‘. | IPCServer | ‘/'
w. ,./';
..-/’..
RN
/./ ".,.‘.'

.'//
.".’
n ..______\
s - / P
‘ \ o [Decitore ..'
L N, ~ -
= Process: 192. 1.3.126:617: 1031
4

Source UID
Dest UID = Process: 192.1.3.119:213:78

lobal Request ID = 192.1.3.1191213179

equest ID = 192.1.3.119:213:79
General Reply Code = SuccessComplete

jade . I stwong
“ “v-s--— -F///’ - \-.,\"‘— __/‘" -
\ —— —
[Fecora J r 5o ?f'f-‘,’"'"-‘“ e e] I ‘2 PEongle=ites 1
ELog Size ':é;”,-a _I

Commands: Add Filter, Disable Monitors, Enable Monitors, Quit IPCMonitor,
Remove Filter, Show Filter, Toggle Debugging

Figure 13. AuthBindingOf respouse 56

——— ——,

- Schaar
.-";. K

K .\i
Kl -~ \s
A SnowFolder | 1
\ o~ |

\ !

\ {
v /

Source UID = Process: 192.1.3.119:213:78
Dest UID = Process: 192.1.3.117:700:212
Global Request ID = 192.1.3.117:700:213
Request ID = 192.1.3.117:700:213

neral Reply Code = SuccessComplete

~» >RSchaaf -Select with: shift-IV

///
PN
t \\'
s .\‘.
s *,
K "
S 5
K \, .
0 ‘\ _f"" ’,.-—“\ \’\-. .
D - - "
% T { DocStore |
'~.‘. o S -’
i i i l
{ { / i
i |/ P
*—4 IPCSrer f————a{ AuthServer |
! |‘ N o '|
Y !
\ i
Jade O T
e — ""-._ e
[L Fecord fwan coe R Tiingle-ites —]
L v ipesa foilog Seze #5EF e T j

Commands: Add Filter, Disable Monitors, Enable Monitors, Quit IPCMonitor,
Remove Filter, Show Filter, Toggle Debugging

Figure 14. DocStruc ReadValue response &7

Exec-IPCMcnitor " . - . 0 -
MetaMsg Display: ~:% 7 = 7

seee Last Item

This frame contains 15 items.
cece First Item ...

. L]

. >R3¢

o -

0 -] 0 1 192

SrcProcName "DocStore

SrcProcPid “Jade:31°

SourceVUlD Process: 192.1.3.119:213:78
DestProcName ‘EditbDoc’

DestProcPid 'Schaaf:39'

DestVID Process: 192.1.3.117:700:1212
MsgType Response

GlobalRequestiD 192.1.3.117:700:213
RequestlID 192.1.3.117:700:213

GenRep | yCode SuccessComp lete
Objectvalue 0 6 o6 2

WriteDays 45915

WriteMSecs 40241114

MonitoringlInfo <RECORD>

MsgHeader <RECORD>

1

baaf_ Select. witkr

3 119 LN

:h.i.f.t.flv

« 7,

R

P < PORAAND
\\{&v: NV IL e
RSN

(el

Commands: Less Detail!, More Detail, Terse, Verbose or menu

Figure 15. DocStruc ReadValue response —5§1etailed information

-» >RSchaaf. Select with shift-IV

N - i Dochtore |
L R e =’
[Source UID = Process: 192.1.3.117:700:212 | ;
Dest VUID = Atom‘i’cITagez192.1.3-119:202:52
Operation = Readvalue |
Global Request ID = 192.1.3.117:700:218 e
[Request ID = 192.1.3.117:700:218 — fuwserer |

— N e !
" — — ;

N . Y !

"

3

~ [T Bioreie~itan j
R j

Quit IPCMonitor,

Commands: Add Filter, Disable Monitors, Enable Monitors,
Remove Filter, Show Filter, Toggle Debugging

Figure 16. Atomicimage ReadValue x‘ecn.tes?."59

} ShowFolder :} b
SN———— \\' / N—— \
x /)
|3
1400 7} (8 g
s AV

//"—\, /"—‘\\\
(Diamond |

(

|

\

"l

Source UID = Process: 192.1.3.119:243:87

Dest UID = Process: 192.1.3.117:700:212

lobal Request ID = 192,1.3.117:700:218
equest ID = 192.1.3.117:700:1218

“ (|General Reply Code = SuccessComplete

..‘n ,./-—-—.-\ ~-...
T T T
| DecStore :|
. —
i ! Ay
N I .-‘ '.‘
{ 4 |
i " /..—-_. :'.’ . A\\ |
|-—(IPCServer i frtnSarer
I. [__-«/ S |
i ‘
Jade . Do tecrad
.".\. *.’_,-‘ ‘\‘. » -
*-.____/’/ \—___,_-""
Fezora] ,] L]
EP) | ¥ TR L L e
Commands: Add Filter, Disable Monitors, Enable Monitors, Quit IPCMonitor,
Remove Filter, Show Filter, Toggle Debugging

Figure 17. AtomicImage ReadValue responsgo

7. JERICHO INTERILISP

The objective of the Jericho Interlisp task is to pert and extend the Interlisp
programming language and environment to BBN's Jericho personal computer. Interlisp is
one of the two major dialects of the LISP programming language which uaderlies most
research in Artificial Intelligence. This task services two principal goals. First, it
provides the development environment in which other DARPA supported research in
Artificial Intelligence proceeds at BBN, most notably the work in natural language
understanding and knowledge representation. Second, this task builds the foundation
‘for the ALEPH component of this project which is to explore novel programming
techniques and tools. ‘

The task of porting Interlisp-10 from a mainframe to a personal computer
involves three categories of effort: 1) porting the initial system, 2) extending it to
accommodate the functional capabilities of the hardware, and 3) system maintenance.
In previous reporting periods, we have addressed each of these areas. In the current
period, we incorporated Active Values, and we incorporated a multiple-prccess
capability.

7.1 Active Values

We have implemented a version of Active Values which is modeled on the design
used by Bobrow and Stefik in LOOPS. Active Values provide a way to invoke a function
when the value of a variable (more specifically, a SPECVAR) is set, or when a field in a
userdatatype, array record, block record, or array is either fetched or replaced. With
them it is possible to implement monitoring (i.e.: "Call me if someone attempts to set

my value to XYZ") and other event dependent mechanisms.

In our implementation, an Active Value is a datatype containing a local state, a
PUT function, and & GET function. The local state holds the 'real value”, which may
be another active value so Active Values can be nested. The PUT function is invoked
whenever the Active Value is set or replaced. The GET function is invoked whenever
the Active Value is fetched, except for SPECVARs where it is ignored.

PUT functions are invoked with arguments DATUM, OFFSET, ACTVAL, and NEWVAL.
OFFSET is ignored for SPECVARS, ACTVAL is the active value containing the PUT

61

——— Y S

function, and NEWAL is the value to be stored. The usual form of a PUT function is:

(LAMBDA (DATUM OFFSET ACTVAL NEWVAL)
(DECLARE (LOCALVARS . T))
(¢ User's code here)

(PUTLOCALSTATE ACTVAL NEWVAL DATUM OFFSET)

PUTLOCALSTATE stores NEWVAL in the local state of ACTVAL which may invoke
additional PUT functionS, with NEWVAL ending up in the local state of the innermost
active value.

The arguments to a GET function are DATUM, OFFSET and ACTVAL. The usual form
of a GET function is

(LAMBDA (DATUM OFFSET ACTVAL)
(DECLARE (LOCALVARS. T))
(PROG1 (GETLOCALSTATE ACTVAL DATUM OFFSET)

(s User’'s code)

GETLOCALSTATE gets the localstate of ACTVAL which may invoke additional GET
funriions. The reason for doing the GETLOCALSTATE first is to mimic the Loops nesting
in which nested PUT functions are invoked from outermost to innermost while GET

functions are invoked innermost first.

It is essential that the ACTVAL argument to & PUT function or GET function be a
LOCALVAR. Therefore, PUT functions and GET functions must be compiled. Binding a
SPECVAR to an Active Value will access the local state, not the Active Value.

A number of functions have been provided for the benefit of users.

To aid in defining PUT and GET functions. a function named DEFAVFN (NAME
PUTFLG) has been provided. If PUTFLG is T, the function provides an editor template
for defining NAME as a PUT function. If PUTFLG is NIL, the template provided is for a
GET function.

To access the local state of an Active Value without triggering nested Active
Values the functions are:

62

(GETLOCALSTATEONLY ACTVAL)
(PUTLOCALSTATEONLY ACTVAL NEWVAL)

To create Active Values, the function is:

(MAKEACTIVEVAR VAR PUTFN VAL)

which makes the current binding of VAR an Active Value.

PUTFN will be invoked
when the current binding of VAR is set.

If VAL is not NIL it becomes the localstate.
Otherwise the local state is the current value of VAR. (Note that PUTFN is invoked
when the current binding is set, not when VAR is rebound.)

The function

(MAKEACTIVEFIELD DATUM FIELDNAME PUTFN GETFN VAL)

mekes the field FIELDNAME in DATUM active. VAL defaults as in MAKEACTIVEVAR.
FIELDNAME is the record field name as in fetch or replace. FIELDNAME can also be an
integer to allow activating unnamed array elements.

Other useful functions are:

(BREAKVAR VAR)

which is similar to BREAK(FN) in that a break is entered whenever the current
binding of VAR is set;

{UNBREAKVAR VAR)

which removes the break;

(BREAKFIELD DATUM FIELDNAME WHEN)

which causes a break when the field FIELDNAME in DATUM is referenced;

(GETAVFNS DATUM FIELDNAME)

63

which aids in looking at Active Values by producing a list of GET function, PUT
function pairs, outermost first;

(UNBREAKFIELD DATUM FIELONAME)

which removes the break; and

(REMOVEACTIVEVALUE DATUM FIELDNAME PUTFN GETFN)

which removes an active value, anywhere in the nesting, from field FIELDNAME in
DATUM. PUTFN and GETFN are usually LITATOMS. The Active Value removed is the first
one found whose PUTFN adn GETFN match. If only one of PUTFN and GETFN is specified
and an Active Value is found which has a function matching the one specified that
function is set to NIL in the Active Value.

If DATUM is a LITATOM, FIELDNAME is ignored. To remove an active value directly
PUTFN can be an Active Value. However, it must be remembered that passing an Active
Value around requires that it not be bound to a SPECVAR, therefore not to any
variable in interpreted code.

64

8. ALEPH

The goal of the ALEPH component of the project is to conceive and test new
ideas and tools which can aid the programmer in his task. We expect that the
capabilities of a personal computer such as the Jericho can offer new opportunities in

this area, particularly the high-resolution bitmapped display.

In this reporting period, we improved the Graphical Debugger and the Code
Presenter that were documented in previous reports, and we provided an application
of Active Values that enables users to visualize the changes that have occurred

between successive versions of software.

8.1 Application of Active Values

With the emergence of Active Values in INTERLISP Jericho we have begun to
explore their use in helping software developers visualize changes in the data
structures they manipulate. Our paradigm is as follows: a user looks at a screen in
which figural representations of the different data structures he/she is working with
are displayed. As the user’'s program modifies the de;ta structure, he/she notices a
change in the visual appearance of one of the representations. From this change, the
user is able to infer effortlessly what went on, and modify his program accordingly.
Active Values, i.e.: the ability to invoke any function when a value is either read or

written on, make possible the cost—effective realization of this paradigm.

One of the visualization ideas we explored is to represent a list structure as a
tree. For example, the list (A (B C) D) could be represented as

/B—C
A-—[] —0D

After implementing a set of functions to construct these trees, we experimented
with various ways of visually portraying changes of different types. As none of these
portrayals seemed satisfactory, we decided to try a different approach. Upon detection
of a change, we would invoke a comparator that, given the original list and the one
with a changes in it, would induce the procedural information needed to transform the

original list into the new one.

To be really useful, this procedural information must be represented in such a
way that:

1. it corresponds closely to the annotations and scribbles a human editor
would use in order to visually convey the changes he wants,

it must implicitly contain the precise instructions needed by a machine
editor to carry out those changes.

Thus, comparing the lists

(ABCDE) ond ((B (C)) D A)

we want to come up with a representation that enables us to portray the
changes visually as, for instance,

.__>___

(A B (C)) o Z []) (underlines

denote new characters)

and capable of generating the sequence ‘of INTERLISP editor commands,

sbi 3
sbi 2 3
*(4)

smove 1 to a 3

The representation we have chosen is based on the use of annotations which are
affixed like labels to the original list's elements. The labeis are MOVED-FROM, MOVED-

TO, NEW, SAME, and BLANK. For the original list given in the example above, the
representation would be:

(. MOVED—-FROM)

A

LP . NEW)

£ .SAME;

. NEW

(c . SAME)

(RP . NEW))

RP . NEW)

ﬁo. SAME

éE . BLANK

A . MOVED-TO))

66

where for clarity we have used LP and RP instead of “(" and ")".

Notice how different this representation is from something like

(?.BLANK)

The former recognizes that —~ B C —- can be transformed into -~ (B (C))
—~— by inserting parentheses, and that A is moved from being first in the list to being
last. It corresponds to the "penciled” marks & human editor would make to convey how
to transform one list into the other in a sensible way. The latter does the job but in
a blind, brute force way: A is deleted from the beginning and inserted at the end as if
it had never been seen before, and (B (C)) is considered a new element while B and C
are deleted.

Once the representation has been induced, there are at least two ways of
utilizing it. The first one is to obtain the corresponding commands for the INTERLISP
structural editor. The software to accomplish this was designed but was not
implemented due to lack of resources. The second, and more interesting one, is to
generate from it something akin to the annotations used by human editors to convey
visually to a typist the nature and extent of the changes they want.

We have produced a package that performs a version of this visual rendition. An

example of what it can do is given in Figure 18.

67

NEW EXPRESSION:

[a L (NOT (M (C N)
(C EY)
(CL)
E]

L)
[NOT (M (F (C N : [ST(FLL.
F (CE - (M

c
(0 (C c

{NOT (E (4%

(AL ENUT EM Al (C N)) HEl (C EX)
(ST(FLL ... %
mﬁl(c LB (C B
)

Figure 18. Transforming Old into New

68

The window titled "NEW EXPRESSION” contains the result of several editing
changes performed on the list contained in “NEW EXPRESSION”. The window titled
"COMPARISON” contains an annotated version of OLD EXPRESSION, where white
characters on gray shade represent deletions, and inverted characters (white on
black) represent new insertions.

In Figure 18 we show the result of reversing the comparison by swapping "new"

and “old".

8.2 Code Presenter

We have continued developing the code presenter reported in the previous
report. The code presenter is a tool that helps a programmer examine code that
usually has a high branching factor. Typically, at a given time, the programmer is
interested in a single branch or a set of related brenches. The code presenter
provides two ways cf looking at code that draw attention to the relevant paths in the
code. The code presenter looks at variable bindings in & hypothetical environment
and possibly in the running environment and presents the code with branches that

are relevant to the environment in a visually distinctive way.

In the previous version of the code presenter, the code was compressed so that
the irrelevant branches were eliminated and the relevant branches were partially
evaluated. The resulting code is functionally equivalent to the original code in the
given environment. In the current version, we have extended the code presenter to
give the programmer the option of seeing the compressed code or seeing the original
code with the relevant branches highlighted.

In a given environment, a piece of code will either be evaluated, it will not be
evaluated, or there is not enough information in the environment to know whether it
will be evaluated. The last class of code is treated as two classes, code that contains
unbound variables that prevent further analysis, and code that is not available to be
analyzed (usually compiled code whose source definitions are not available). The
details of the analysis were given in the previous report. It then presents the code
using four different fonts to highlight the branches. Code that will be executed in the
given environment is highlighted in a bold font. Code that may be executed depending
on the values of bound variables is presented in a normal font. Code that can not be

analyzed is presented in an italic font. And code that will not be evaluated in the

69

————

HEW- EXPRESSIO
)
L
[NOT (M (F
(F
(0 (C E)

S
(

Figure 19. The reverse transformation

current environment is presented in a small font.

Figure 20 is an example of a piece of code with a fairly high branching factor.
All examples in this section use the same code and environments as the examples 1n

70

Scrollabie PP Window -

(SELECTQ OBJECT
(INTEGER (SELECTQ OPERATOR
?PLUS (QUOTE IPLUS))
DIFFERENCE (QUOTE IDIFFERENCE))
(TIMES (QUOTE ITIMES
(QUOTIENT (QUOTE IQUOTIENT))
(PRINT (QUGTE PRINT.INTEGER))
ERROR OPERATOR IS AN UNKNOWN OPERATOR FOR INTEGERS")))
(REAL .NUMBER (SELECTQ OPERATOR
(PLUS (QUOTE FPLUS))
(DIFFERENCE (QUOTE FDIFFERENCE))
(TIMES (QUOTE FTIMES))
(QUOTIENT (QUOTE FQUGTIENT))
(PRINT (QUQTE PRINT.REAL .NUMBER))
(ERROR OPERATOR “IS AN UNKNOWN OPERATOR FOR REAL NUMBERS
(LIST (SELECTQ OPERATOR
(FIRST (QUOTE CARB)
(SECOND SQUOTE CADR
(THIRD (QUOTE CADDR))
(REST (QUOTE COR))
(PRINT (QUOTE PRINT LIST))
: &ERRDR OPERATOR “IS AN UNKNOWN OPERATOR FOR LISTS")))
(ERROR OBJECT "1S NOT A KNOWN DATATYPE"))

Figure 20. Code segment parameterized by variables OBJECT and OPERATOR

the previous report.

The code in figure 20 is parameterized by the variables OBJECT and OPERATOR
and is intended to return the name of the function which performs the prescribed
operation for the given object type. For example, the PLUS operator for the INTEGER
object is IPLUS. Since the figure shows the code segment displayed when both
variables OBJECT and OPERATOR have no value, the entire code segment is printed in

the normal font.

Figure 21 shows what happens when the variable OBJECT is bound to

71

REAL.NUMBER and OPERATOR is unbound. Notice that the outer SELECTQ is in bold face
to signify that it is evaluated, and so are the parentheses around the INTEGER case.
The contents of the list, however, are in a small font to signify that the INTEGER case
will be investigated but will fail because INTEGER is not the same as REAL.NUMBER.
The REAL.NUMBER case is in bold face as is the SELECTQ it contains. The cases of the
inner SELECTQ are in the normal font because the variable OPERATOR is not bound.
The code presenter can not determine which of the cases will execute in an
environment with OPERATOR unbound.

Scrollatle PP Window -

(SELECTQ O0BJECT
(wmearn (secra opeaaton
(PLUS (QUOTE PLUS))
(DNTERINCT (QUOTE IDITTRINGE))
(TeeLs (QUOTE TIES))
(QUOTIENT (QUOTE KQUOTIENT))
(mn (QUOTE PANT MTECLR))
CRROR OPTRHIOR “IS AN UNINOWN OPLRATOR FOR ITLGIRT™)))
(REAL . NlHBER (SELECTQ OPERATOR
(PLUS (QUOTE FPLUS) g
(DIFFERENCE (QUOTE FDIFFERENCE))
(TIMES (QUOTE FTIMES)
gQUOTIENT (QUOTE FQUOTIENT))
PRINT (QUOTE PRINT.REAL .NUMBER)
(ERROR OPERATOR "IS AN UNKNOWN DPERATOR FOR REAL NUMBER:
(UST (STLECTQ OPLRATOR
(PRST (QUOTE CAR))
(SLCOND (QUOTE CAOR))
(THIRO (QUOTE CADOR))
(REST (QUOTE COR))
(PRONT (QUOTE PRINT LIST))
(TRROR OPERATOR =S AN LNKNOWN OPLRATOR FOR LISTS™)))
(TRROR OBJICT ™IS NOT A KNOWMN DATATYPL™))

Figure 21. Code segment with OBJECT bound to REAL.NUMBER and OPERATOR unbound

Figure 22 shows the code presented when OBJECT is bound to REAL.NUMBER and
OPERATOR is bound to TIMES. It shows that the branch to be taken is fully determined

72

and that the value returned will be FTIMES.

Scrollable PP Window

(SELECTQ OBJECT
(»ean (stuzcta operaton
(PLUS (QUOTE DLUS))
(DEFTERENCE (QUOTE ONTERENCE))
(THES (QUOTL TRes))
(QUOTIENT (QUOTE KQUOTIENT))
(PRINY (QUOTL PRINT NTEZGER))
(TRAOR OPLRATOR ™13 AN UNHNOWN OPLRATOR FOR INTZGIRS™)))
(REAL. Nl.NBER (SELECTQ OPERATOR
PLUS (QUOTE FPLUS))
DETERINCE (QUOTE mﬂmm&
ES))

(TIMES (QUOTE FT

(QUOTIENT (QUOTE FouonexT))
(PRINT (QUOTE PRINT REAL JUNBLR))
(CAROR GPERATOR *IS AN LAINNOWS OPTRATOR FOR REAL MUMBLRS®)))
(LIST (STLICTQ OPERATOR
(MRST (QUOTE CAR))
(3TEOMD (QUOTE CAOR))
(THRD (QUOTE CAOOR))
(NS (QUOTE COR))
(PRIIT (QUOTE PRT LIST))

(TAROR OPZRATOR ™IS AN UNKNOWN OPERATOR TOR LISTS*)))
(TRROR OBJICT ™18 NOT A KNOWN DATATYPL™))

Figure 22. Code segment with OBJECT bound to REALNUMBER and OPERATOR bound to
TIMES

Figure 23 shows the code presented when OBJECT is unbound and OPERATOR is
bound to TIMES. Notice that the path in each of the inner selectqs is fully
determined. The outer selectq cean not determine which branch to take in the given
environment. In this example, one of four values will be returned, ITIMES, FTIMES, or
one of the two error statements.

The Code Presenter is currently running in Jericho INTERLISP and it can handle
most INTERLISP functions including display oriented functions. It has proven to be a

73

Scrollable PP Window

(SELECTQ O0BJECT
(INTEGER (SELECTQ OPERATOR
(pus (quote sus))
{ owreronet (Quott oFTTRINCE))
(TIMES (QUOTE ITIMES))
(QUOTIENT (QUOTE KUOTIENT))
(nm (QUOTE PRINT MMTZGER))
TRAOR OPTAATOR “IS AN UNINOWN OPERATOR FOR INTEGIRS*)))
(REAL .NUMBER (SELECTQ OPERATOR
(mus (ouott rus))
(oertrence (quote rowTerence))
(TIMES (QUDTE FTIMES))
£QUOTIENT (QUOTE FQUOTIENT))
(PRINT (QUOTE PRINT RLAL NMIMBLR))
(LRROR OPLARTOR “IS AN UNIKHOWN OPLRATOR FOR RLAL KUMBLRS ™)))
(LIST (SELECTQ OPERATOR
(rmst quore cam))
(stcomo (quore caoe))
(o (quore cacon))
(nesT (quote com))
PRNT (QUOTE PRINT .LIST)
&ERROR OPERATOR "IS AN UNKNOWN OPERATOR FOR LISTS")))
(ERROR OBJECT "IS NOT A KNOWN DATATYPE"))

Figure 23. Code segment with OBJECT unbound and OPERATOR bound to TIMES

useful tool for analyzing and debugging complicated functions that the user does not
fully understand or that have a non-trivial logical bug.

One limitation of the Code Presenter is that it is not a passive tool -- it
requires that the programmer set up environments and select code to examine. Both
are trivial to do but the programmer must examine the code and decide what variables
to bind in the environment.

Another limitation is that neither method of display (highlighting or compressing)
is really enough to do the entire job alone. Highlighting of a large complicated

function can be hard to read. And the compression of a large complicated function

74

does not resemble the original code. Clearly the ideal solution is some combination of
the two methods. Unfortunately we were not able to try to combine them. It would
require a great deal of research to determine a useful balance between the two. The
balance is a function of the complexity of the code, the size of the code, the
restrictions implied by the variable bindings in the environment, and the programmers
ability to comprehend the size and complexity of the code presented.

A less important limitation we encountered is that the INTERLISP printing package
was not designed to handle fonts properly. We were able to obtain the output shown
here only by improving the PRETTYPRINT package but it is obviously not perfect. It
does not handle line height properly when fonts are of different heights. Printing
characters in different fonts can cause overlapping characters both vertically and
horizontally.

75

9. HERMES MAINTENANCE

During this period work on the Hermes electronic mail system program was

routine maintenance.

77

DISTRIBUTION LIST

3dcresses rumber
cf copies

Thamis F. Lawrence 10
TANC/ et

eapc/covt 1
CGRIFFISS AF2 NY 13441

maac/car ?
SRIFFISS AFS NY 13441

LD INISTRATCR 5
DEF TeCH INF CTR
4TI pTIC-DD?
CAYERCN STA EG S
CALEXANDRIA VM (2204-€145

Rasc/CcecTe 1
~L3G 2, ROOM™ 14
SKIFFISS AF8 NY 13441-570C

AFCSPA/SAN] .
fttn: Migs Criftin

15367 Pertagen

wash CC ?2(C33C~-%425

HG O OUSAF/SCTT 1
Bentacon
~ash CC 2(C33C-%16C

SEF/EGSC 1
Centacen 4N=267
“ash oC 2(33C-10nC

CISECTNR 1
AvAyTE

"TTw: SoSIv

ash CC 2C315-N(C20

DL-1

:————-—

Nirec*cr, Infc Systens
0ASD (C31)

Rr 38107

Pentazn

“wash CC ¢(301=-3C4Q

Fleet Analysis Center

4ttn: GICEF Creraticrs Center
Code 20G1 (E. Rkicharcs)

Ccrore CF 9172C

H3 AFSC/CLAE
ENDREWS 2F3 £C 2C334-500C

Y& AFSC/XKT
“ndrews AFY ML 203 34-500C

EG AFSC/XRK
ANOKREWS 2FB D 2(0334-500

MG SA(/SCFT
CFFUTT AFE NE €8113-5001

3 ESC/DOCR
fttn: Fred Lacwig
S3n Brtorio TX 78243-5000

"TESSA/RPQEE

LT TN LARRY G.NMCMANLS
2501 YALE STREET SE
Airpcrt Flaza, Suite 102
SLILGUERCLE NV 87106

H3 TAC/DRIY

At tn: Mr. Westerman
Langley AF3 va 23645-5301

DL-2

Ha Tec/oca 1
LANGLEY AFB VA 23665-5001

H38 TAC/DRCC 1
LANGLEY 2f8 yA 236 45=5001

48 TAC/DRCA 1
LANGLEY A2FB VA 23665-5001

ASH/ ENEMS 2
Wright~Pat terscn AFB CH 4543 3-65C3

ASD~AFALC/AXE 1
WRIGHT~PATTERSCN AFB CH 45433

ESN/EFALC/AXSE - 1
tttn: W. H, Dungey
drijght-Fattersor AFE Oh 45433-6533

ASN/ENAYE 1
Wrigrt=Patterscn AFB CH 45433

LFIT/LDEE 1
SUILLING 640, tREA 3
«RIGRT~2ATTERSCN AFB CH 4543 3-6583

AFWAL/MLFC 1
“RIGHT~PAT TERSCN AF3 CH 45433-4533

BFWLAL/NLTE °
“RISGHT~PATTERSCAN AF3 Ch 45433

DL-3

AFWAL/FIES/SLRVIAC
“RIGHT-~PATTERSCN AFB CH 45433

8 AMRL/HE
WRIGET-PATTERSCN AF3 CH 45433-£573

8ir Fcrce Humrar FResowrces lLatoratory
Techrical Documerts (enter
SFHRL/LRS-TDC

sxright=-Pztterscn AFB CH 45433

275N A2W/SSLT

RL4g 262

Cost 11S

wrighkt-~Pat terscn AFB CH £54433

AFHRL/OTS
wILLIAMS AFB AZ 8524(C-6457

1243C1G/E1EM
HICKEVy AFE HI G6854

AUL/LSE
YAXWELL AFS8 AL 36112-5564

HG AFSPACECCM/XPYS
ATTN: DR, WILLIAM R, MATOUSE
PETERSON AFB CC £0914-50C1

32CTTIG/EISS
tttn: TSct Kirk
Lacklana AFB TXx 7823¢

DL-4

heferse (cmmunications Engineering (Ctr
Techrical Litrary

1843 wiehle dvenue

Restcr VA 22(6C-5500

COMMAND CONTRCL AND (CCMMUNICATIONS DIV
DEVELCPMENT CENTER

“ARINE CCRPS DEVELCPMENT 8 EOUCATION COMMAND
ATTN: CCCE CICA

TUANTICO vA 22134-SCEC

AFL¥MC/LGY
ATTN: Chs SYS EAGR C1V
TUNTER AFS AL 26114

“.S. Army Strategic Ceferse Ccmmand
Sttn: DASD=F=NFL

2.0, Eox 150C

Huntsvil le AL 3158Q07-2601

COMMANDING CFFICER

NAVAL AVICNICS CENTER
LIBRARY - D/765
INDIANAPCLIS IN 46216-2186

CC"MANDING OFFICER

“MAVAL TRAINING SYSTEMNS CEATER
TECHNICAL INFCRM¥ATION CENTER
SUILCING ¢D6F

TRLANDO FL 32813-710C

COMMENDER

*AyAL CCEAN SYSTENMS (ENTER

ATTHN: TECHNICAL LIBFARY, COCE 94428
SaN DIEG6C CA 62152-5C00

CCMMANDER (CCDE 2433)

ATTN: TECHNICAL LIBFARY

NAVAL WEAFCNS CENTER

CHINE LAKE, CALIFORNTIA 93555-6001

SUPECINTENDENT (CuDE 1424)
“EYLA PQOST GRECUATE SCHOCL
YINTEREY CA 632643-500C

DL-5

“

COMMANDING OF FICER

MAVAL RESEARCH LABORATORY
ATTN: CCDE 2627
“wASHINGTCN DC 20275-500C0

SPACF & AAVAL WARFARE SYSTEMS COMMANGD
e¥W 153-2p»

ATTN: R. LAVARESE

“ASHINGTCN BC 20263-5100

CDRs LeSe ARMY MISSILE CCMMAND
QENSTCNE SCIENTIFIC INFORMATICN CENTER
AT TN: AMEMI-RC-CS-R (DCCUMENTS)
“EDSTCNE ARSENAL AL 258GE-5241

tdviscery CGroug or Electrcn D:vices
Hammecrd Jehn/Tectnicsl Irfc Coorcinatcr
231 varick Street, SLite 114C

New Ycrk NY 10C14

UNIVERSITY CF CALIFCRNIA/LOS ALAMOS
MATICANAL LABCRATCRY

ATTN: DAN BFCA/KEPOFT LIBRARIAN
Feda EOX 15632, #MS-P3£4

LCS fLAY¥CS ANV 87545

KAND CCRFCRATICN THE/LIBFRARY
HELFFR CCRIS S/KEAD TECK SVCS
.7 ENX 2138

SENTE ¥OMICA CA GC40€-2135

827C LIARFARY (TECh REFORTS FILE)
¥S=10(
SRMOLD AFS TN 272E6-695,35

w545
At tn: ASkE-P(A-CRT
Ft Huachuca AZ 8§%5613=-600T1

DCT LISRARY/1C2 SECTICN

AT TN M463,7

0N INDEFENDENCE AVE. Sak.
wASH 2C 2059

DL-6

1839 EIG/EIET (KENNETF Wwe IREY) 1
KE ESLER AFB ¥S 36534-634S

JTFPNC ?
Attn: Technical Director

1500 Flanring Research Drive
MclLeen V2 2102

HG ESC/CuPP 1
Sar Artcrio TX 78243-500C

AFEWC/ESRI 4
SAN ANTCAIC TX 78243-500°0

4LES EI1G/EIER (CMC) 2
GRIFFISS AF3 NY 12441-6348

£Sn/2yS 1
AT TN: ADV SYS DEV
HANSCOM™ 84F8 MA (01731-500C

ssn/IcP 1

FSN/B\SE ?
2LNG 1704
FANSCOM 2FB MA (01731-5007

YR ESC SYS§=2 1
L ANSCCY AFB YA 01731-500C

£ESD/TCD-? 1
AT TN: CEFTAIN Jo MEYER
MANSCOM AFB YA 01731-500C

DL-7

.

The Scftuware Ergineering Institute
Attn: Major Dan Burtcn, USAF

58N Scuth Aiker Avenve

Pittsturch P3a 15232-1502

DIRECTOR

ANSA/(CSS

ATTN: TS13/70L (DAVID MARJARLM)
FORT CEQRCGE € MEADE MC 2C755-¢000C

NIRECTCR

\SA4/CSS

ATTN: K164

TCRT GEORGE € MEADE NP 20755-600C

"IRECTOR

NSA/(CSS

ATTN: R=-831€ (MR, ALLEY)

FCRT GEORCGE € MEADE MD 2(795-600C

DIRECIOR

NSA/CSS

ATTN: R24

FORT GEORGE € MEADE ¥D 2(0755~-6700

DIRECTCR

LNS&/CSS

AT TN: R21

G8NQ SAVAGE RCAD

FORT GEORCEE C MEASDE MO 2(755-4000

PIRECTCR

NSB/(SS

ATTN: DEFSMAC (JAMES E. HILLFMAN)
FCRT FEQ0REE C “EADE ML 2(C755-¢N00C

DIRECTIR

NSA/ZCSS

AT TN : RZ1

FCRT GEORGE G MEADE M0 20755-600C

NIRFRCICR
*S4/7(Cs58S
AT TN: RS

FCRT GEOFRCE C MEADE MC 2C755~600C

DL-8

DIRECTOR . 1
~54/CSS

AT TN: RE

FORT GEORGE G MEADE ML 2C755-600C

NIRSCICR 1
NSA/CSS

AT TN: SC21

FORT GEORGE C MEADE ¥[2C755-400C

NIRECTOR 1
NS8/CSS

AT TN: S

FORYT CEOREGE C MEADE T 20755-¢470C

PIRECTOR 1
ASA/C(CSS

AT TNe V33 (S, Friedrich)

FCRT GEQORGF G NEADE NC 2(C755-€00C

PIRELCTOR 1
NSA/CSS

AT TN: WC7

FORT GEORCE C MEADE ML 20755-600C

2IPECTOR 1
\NS8/CSS

ATTN: W32

FORT GEODRCEE € NMEADE ¥C 2C755-€03°C

NDIRECICR ?
\34/CSS

"TTN: REZ3

FCRT GSCREE € MEADE ML 20755-600C

"2h CCMPUTER SECLRITY CENTER 1
AT THY CS4/TIC

78070 SAVEGE RCED

FCRT GEORCGE € MNEADE ML 2(C755-601C

Yaqrry C, Fnorsdick 1
2N Leboratories Inc

17 e lter Street

Canhridge, *2

=2 9273¢

DL-9

Jecn Silvermar

Hecney Inccrgcratea

Ccrpcrate Systems Develcrcment Center
1000 €onre Averue (Ncrth)

folder Vel leys MN 5S427-4437

James Rickarcscn

Hecneywel l Incecrpgcratec

Ccrpcrate Systems Develogrrent (enter
1077 Eoore Averue (Ncrth)

“clder Valley, MV 5%427=-4437

F. Dcuglés Jerser
Carnecie=tallcr Lniversity
Tepartmert of Ccrguter Science
Scherley Fark = hean tall
Citteturc, P 15213-32R6G7

Jesechk Lugo

“arris Ccrporaticn

Cevarrmert Irfcrmaticr Systenms
2l13. 15C5, Jobn Rodes Beculevard
*alboecurne, FL 12935-624C

Patar ¥, Fal liar=-3Smith

Jniversity of Califorria (UCES)

Ject. of Electrical erc lomputer Engireering
Sanmte Tartara, (2

$319£-09)C1

Teresa Fo. Lurt

S*1 Internaticoral

Temputer Science Laboratory
4“3 2% GCaverswocCc Avenye

Yoenleg Parks, (A C4C4C-1224

“rireaw Crcmarty

lzcvarceg fecisiors Systers
Tuite 23€

221 Ser frtcric Circle
“Ycuntain View, Cf 9L(4(0-1734

Alan Lazerra

knowledge System Concepts
276? Liberty Fficéze

Bcmes, NY

124467-4 46C

Saul C. Stactceur

Honeywuel | Inccrpcratec

Secure Cemzutiryg Tectrolcecgy Center
Surte 13C, 2855 Antncrny Lane (South)
St. fnthcny, MAN 55418-3265

DL-10

Zicherd Schartz 3
Aglt Eeranek argc Newman

&N Laboratories

13 Youltcn Street

Cambridge, M2 (2238-00101

“3tthew Ncrgenscern 1
€31 Interratioral

fomputer Science Labc¢ratcry

333 Raverswocc Avenys

anlc Parke CA G4025-2463

Yenry Letkovits 4

£

m O

rvars Lepot Roso
A, Box ¥
vara, VA £1451-0551

L
L
2
L

[:)
-~

Tichard Le3lank 1
feorcia Irstitite of Teckneclcgy

Schocl of Informatior anc Computer S5cience

228 Acrth Avercve

ttlartasr, GA 3IC37%2-G2RO

Laniel A, Wwheeler 1
FAR fcverrmert 3ystems (Ccrporaticn

pae Technclogy Park

227 Seneca TYurrpike

vew Farttcrce AY 13413-1191

#ari Madcuri 1
HFeoneyuwel l Inccrpcratec

fcrpcrate Systems Divisicn (MNE3-CCBCH

1710 EBoore Averue {(Ncrth)

felier vel leys MN 55427-4437

Juliar Certer 1
Tynamics Research Ccrgoration

5 Frcntege kcead

tndnover, MA $01310-5¢14

Steve Virter 1
aclt Eercrek arao Newfmen

aaN Laboratories

12 veultecre Street

Cambriagge, ¥& (G2238-00G1

tnjitz Skeltor 1
Lnisys Ccrocoraticn

¢,sten Develcprert Grecup

5181 Camiro fuiz

Camaril Les CA 93C10-E601

DL-11

e ————————

R¢gn Feterson

Nartir Marietts

Yartir Mcrietta Aerosgace
P. 0. Box 175

Nenvers, (0 SLC201-0176

Sehaorah Teascale

Naval Oceizn Systems Center (NOSC)
fene 443,271

Caralina Eoulevard

San fisqgces CA 62152-500C

Ancre VarTilterg

nffice of Naval Resecrch
are 331 - Rocm 704

NN Aepthk Guincy Street
trlirctor, VA 22217-2500C

Ceralc Ceprara

Kamar Sciences {crporaticn
258 Cenesee Street

Utic3s, NY

13507-462%¢

J. Thcmas Haigkh

*cneyuell Inccrpcratec

S2TC (Suite 130)

2255 Apntkeny Lane (Scuth)
St. Anthcrys, MN 55418-3265

"iane Smith

Corguter Corgoraticn ¢f 2merica
Fecur Camtridse Center
rambridbes, MA

"N71472=-14E6

Vike Frarkel

%l Internatioral

Irforgaticn Scierces anc Technclogy Center
743% RFavarswolCa Avenur \

"enlc 2arkes (B2 S4C25

fol., Alex Lancaster

Ceferse Acvarcea Research Planrirg Agency
DERPL/ISTC

1435 wilson Eoulevarc

Arlictons, YA 22209

John (amtell

aticratl Security Agercy
r31,5%370 Savage Goad

Fr, VYescge, WMD

2C755=-+30C

DL-12

Patricia Easkirger

ITT Fesearch Irstitute
Turir Roac (MNorth)

P. 0. Sox 18C

Rome, NY 1344(C~C180

Lt. Eric Eenrett

Electronic Systems Divisign
ESC/MCN

Hanscem AFB, WM&

f1731=-500C

¥Yarvir Schasfer

Trusted Information Systens
2, 2, Sox 45

Slenwond, VD

2173+

Richarc C, hhite

Catalcgic Systems Inccrpcratec
Syite 206

142 (a3rscn Street

Terrarce, CA GSCSGC3

Pichard Flatck

74dyssey Research Asscciates
1273 Trurmansturg Roac
Ithacare \Y

1485C=-1313

Iyd Craf

Ynitec States Army

43 CECOM

ANSEL=-COV=-10

Ft. *cnmcuth, NS Z77C3

je ¥icmael Snith

int Stratecic Target Plannirg Staff
TeS/JKSF

futt AFE». \E

117-80N0C

r Do —
- (n O w

N R
]

Pobert Leary

Defarsa (cmmuricatiors Agency
DCASCAS

19270 Isaac Newtor Sguare
kestcr, VA 22(5C-50C3

"an terkimer

Y3rrar Marilette

“art1r “Azrietta Aerospace (LT425)
2., C. fox 175

Nenver, (0 SfC?201-0176

DL-13

fatrny Linr

Irctitute fcr Cefense Analystis
1271 Eeavuregaerc Street
tlexandrias. vA 2231 1-1772

"uine Northcutt
Carnecie=Fel lcr Lniversity
Nenartmert of (omputer Science
Scherley Fark - wean Fall

it tsturgs, FA 15213-286C

2l lar Seresey

.Lritec States 2rry
CEZDY

ANSEL=-29-C3-1E-3

Ft. vYenmcuths, N C77C3

ail Liar Seith

“ITRF Corgoratior
mashirjter = Wi74,7525
Cold Shaire Crive
veclLears, VA 22107

Louanna Mctargiacomo
Lrisys Ccrroraticn
7529 westgark Crive
Mclesrs, VA

2107

Jobhn ¥, Rushty

SR1 Irternaticral

Comouter Science Labcratory
232 fayerswoCa Avenuye

“enlc Farke (£ 34025

“anry 33ysrc

“1TrRF Ccrporatior

*erwcrx Techrclccy Systers Degpartment
« e Fox 20F

esfcri, MA (0172C-GeCE

n o

Terry ¥V, Co Serzel
Thae YITRE Ccrgoratior
S 532

Surlingyten Fkcac
Sedfcr4, M& (01720

*icheclas L. Yurray

NASA

AL

NASA Lancley Researct Certer
Hamotens, VA 22667

DL-14

“teve Crccker

Trusted Irformation Systems
1134C Wwest Clyngic B8culevard
Suite 26°¢

Los 2rgeless, C£ G0Jé4

Schert Sccui
ISD/ATS

Hanscc™ FFR, M?
N1721-83nC

Les 2rderson)
\3val Oceén Systems Center (ACSC)
"cne 443,271

Caralina Soulevarc

San [i=s3ces % 921%2-8520C

ReINn/e1-g¥ (LT(C Scwa)
The Fentacon
“asnirgyter OF
2C351=710C

S5 I0/f1=8NF (Lart Hart)
Thae Fentacgon
Lashirgtcr OC
FU31=710C

SIIO/FI=EN (LTC Rindt)
Thae fentegen

w3ashkirarer DC
LR 1=710(

\
Ita (S"IC Liktrary)
LEloert Perel la
1221 North Beauregarc Street
flex2rdria va
2231

S2F/RGSD

ILTC Zen fCreerway
The Fentagor
~asnirqtcr O

eran

EFSC/CV=-C
LTC flynr
‘ngrews AFB, ¥C
2NT34-500C(C
DL-15

6 SC/XR

Lol Feimach

P, 0. Box 625¢C
worlcuway Fostal
Los 3dnaeles, (8

45 Se/CC

Ccel wilkerscr
2. 0. Box 6266¢C
worlcway Fostal
Lcs 2rgeles, (£

F& SC/CONCI
Ccl Fchmar
P, 0. Box 926¢C
worlcway Fostal
Los %ngeles, (2

HG SC/CNCIS
LTC Fennel L
P, 0. Zox 6256C
Worlcway Fostal
Los Arg3eles, (C2

43 ST/CNW

B, 0., Rox §266C
Yorlcway Fostal
Lcs 2rgeles, CE

HG S°/CuX

., C. Sox 9266C
worlcway Fostal
Lecs draeless, (&

5% SL/CNE

£, J. Fox G2G¢C
verlcway Fostal
Los fraeles, CA

FSC/a71

Col Faut
Yansccm AF3, Wt
n1?731=-500C

Fes/ P

LTS Z“lzercerc
Hanscem AFR, MA
21731-59n¢C

Center
9M Cs=-2660

Center
900(65-26¢0

Center
30N05=-294C

Center
SO rg~-25¢€0

Center
900(C%=-26¢0

Center
S (6-26¢0C

Center
G0006=-2G4C

DL-16

’M-um' “RESEARCH IN-DYSTRIBUTED PERSONAL COMPUTER-
IIFORMTXOI SVSYEHS YOLUN. . CU)> BBN LARS l'c Cmﬁlbu
C FORSDIC T AL. AUG 88 BBN-35901-YOL-1
MUISSIFIED mc-TR 88-159- VOL'1 F10601-81-C-02356 F/Q 12/7

[l

;‘rrFFFEEEE

lllllg

|llll§ [EY I3

£SO/ 2IN

Cecl Leib
Hansccm AFB, MA
n171%-530C

BFESTC/XLY

LTC lfetucc
virtland AFB, AN
57117

¢4 SC{C/LASOD-F-SE
Larry Tutts

>, 2. "Rox 157D
tuntsvit les AL
258197

ENSER Corp

Suite ®DC

Crystel Cateway 3

1215 Jefferscn Davis kighway
triinctor, VA 2202

AFNTEC/XPF

act wrotel
Firtland AFBs AM
©7117

Af Srace Commarag/XPX1¢
Setercon AF3, (O
SC8164-53C1

“"irector NSA

v4% Cecrce Hocver

S8ND tavege koeéa

ft. feorge G, Yeade, VD
2i575S=-A00C

DL-17

